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Executive Summary 
 
The effort described in this report was a project to support the Federal Aviation Administration 
(FAA) in evaluating and comparing modeling approaches to predict pilot performance in NextGen 
operations.  This research effort was intended to assess the current state of the art regarding 
modeling of pilot performance on the flight deck and to provide guidance regarding research needs 
in modeling and validation. One hundred and eighty-seven references were identified that examined 
computational models of pilot performance. We identified 12 different features of each of these 
modeling efforts to facilitate comparisons. A subset of these features focused on the quality and 
extent of validating model predictions against pilot-in-the-loop simulation data. In addition, we 
identified 12 different aspects of pilot performance that were the focus of the model in question. We 
report a deep dive analysis of six of the modeled aspects of pilot performance: pilot error, workload, 
multi-tasking, situation awareness, pilot-automation interaction, and roles & responsibility, 
focusing attention on the nature and findings of the several models within each section, including the 
extent and quality of validation and verification. We then describe in detail, several model 
architectures, that appeared in more than one of the modeling efforts in our deep dives. We then 
present overall conclusions and recommendations in a final section. We emphasize the importance 
of continuing to validate the models, in particular those that accommodate more than one aspect of 
pilot performance within their architecture. 
 
 

1. Introduction 
NextGen operations are associated with a variety of changes to the national airspace system (NAS) 
including changes to the allocation of roles and responsibilities among operators and automation, the 
use of new technologies and automation, additional information presented on the flight deck, and the 
entire concept of operations (ConOps).  In the transition to NextGen airspace, aviation and air 
operations designers need to consider the implications of design or system changes on human 
performance and the potential for error.  To ensure continued safety of the NAS, it will be necessary 
for researchers to evaluate design concepts and potential NextGen scenarios well before 
implementation. One approach for such evaluations is through human performance modeling.  
Human performance models (HPMs) provide effective tools for predicting and evaluating operator 
performance in systems.  HPMs offer significant advantages over empirical, human-in-the-loop 
testing in that (1) they allow detailed analyses of systems that have not yet been built, (2) they offer 
great flexibility for extensive data collection, (3) they do not require experimental participants, and 
thus can offer cost and time savings.   
 
HPMs differ in their ability to predict performance and safety with NextGen procedures, equipment 
and ConOps. Models also vary in terms of how they approach human performance (e.g., some focus 
on cognitive processing, others focus on discrete tasks performed by a human, while others consider 
perceptual processes), and in terms of their associated validation efforts.  The objectives of this 
research effort were to support the Federal Aviation Administration (FAA) in identifying HPMs that 
are appropriate for predicting pilot performance in NextGen operations, to provide guidance on how 
to evaluate the quality of different models, and to identify gaps in pilot performance modeling 
research, that could guide future research opportunities.  This research effort is intended to help the 
FAA evaluate pilot modeling efforts and select the appropriate tools for future modeling efforts to 
predict pilot performance in NextGen operations. 
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1.1 Overview 
The project consisted of eight primary tasks: 
 
Task 1: Research the available HPMs used for flight deck aviation. 

 
To address Task 1, the team reviewed literature to identify models that have been 
used to evaluate pilot performance.  A spreadsheet was developed to summarize the 
relevant pilot performance modeling efforts and empirical validation studies of pilot 
model predictions.   

 
Task 2:  a.  Develop a classification scheme for HPM evaluation and apply this classification 

scheme to the available HPMs identified in Task 1.    
 

b.  Characterize how criteria can be assessed to define research requirements and to 
evaluate research products by identifying and enumerating those that predict 
specific NextGen-relevant aspects of pilot performance, and those that have 
included a validation component. 

 
For Task 2, the team identified a preliminary set of coding criteria or features to characterize 
models. Through an iterative process of reviewing papers that summarize modeling efforts, 
applying the coding, and identifying problems (categories that were not relevant, issues that 
were not captured in the criteria), the team developed a final set of coding features and 
criteria.  Based on these coding criteria, an assessment of the state-of-the-art of modeling 
capabilities was made by determining the degree to which validated models exist for each 
pilot performance parameter. 

 
Task 3:  Develop an approach for performing a deep dive assessment of specific pilot 

performance models.  
 

We performed a preliminary deep dive assessment of the error models by reviewing 
the relevant models, identifying the issues that they address, and assessing the extent 
to which these models were validated. 

 
Task 4:  Examine and summarize the empirical database of existing pilot performance 

models to identify tools and modeling architectures and aspects of pilot performance 
that they address. 

 
In this task, we identified the modeling architectures used to create the different pilot 
performance models, and made note of the aspects of pilot performance that these 
models were used to address. 

 
Task 5:  Determine the criteria for model verification (e.g. process verification, procedural 

verification), and review the database of pilot models to identify which models have 
been verified and the extent to which they have been verified. 

 
We identified a set of criteria by which to characterize model verification and 
assessed the models that were included in the deep dive reviews in terms of their 
degree of verification or validation. 
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Task 6:  Evaluate the pilot performance model validation efforts to provide assessments of 
validation quality and facilitate comparisons across validation efforts. 

 
We evaluated the modeling efforts (included in the deep dive reviews) in terms of the 
extent to which they had been verified and validated. 

 
Task 7:  Review aspects of pilot performance addressed by modeling efforts.  In particular, 

these are six performance aspects identified in consultation with the FAA to be of the 
highest priority for NextGen: pilot error, workload, multi-tasking, situation 
awareness, pilot-automation interaction, and roles & responsibility.  Perform a 
qualitative analysis to describe and characterize these efforts. 

 
We reviewed aspects of pilot performance addressed by modeling efforts, and 
performed a qualitative analyses, or deep dive reviews, of the six aspects of pilot 
performance.  

 
Task 8:  Based on the modeling efforts reviewed and criteria developed, provide 

recommendations of validated models that are particularly relevant to NextGen. 
Identify NextGen research gaps based on insufficient validation efforts as determined 
from the review. 

 
We provide a set of general recommendations regarding the use of models and needs 
for future research. 

 
In this report we first overview NextGen operations and modeling requirements. Then in 
Section 2, we describe our methods for identifying and classifying pilot models, discuss the 
issue of model validation, and present the overview of all pilot models identified. In Section 
3, we present the deep dive into the six model aspects that were identified as highest priority 
for NextGen. In Section 4, we review the architecture of models that were used in multiple 
applications. Finally in Section 5, we present conclusions regarding the nature of the existing 
models, their status of validation, and recommendations for future research. 

1.2 NextGen Operations and Modeling Requirements 

1.2.1 Characterizing NextGen Operations  
One of the main goals in this effort was to help the FAA in selecting models to predict pilot 
performance in NextGen operations; a suite of operations and technology intended to increase the 
efficiency of the future airspace, with no loss in the current high level of safety.  In 2009, several 
members of the current research team performed an extensive analysis of NextGen operations and 
identified changes to ConOps compared with current day operations (see Gore et al., 2009 for 
details).  A short summary of the key issues is provided below (from Gore et al., 2009, pp 28-30).  
The 2009 report addressed super density operations; this concept is particularly relevant for the FAA 
in evaluating pilot performance, as it provides high workload conditions for pilots in NextGen 
operations. 
 
The following subsection identifies changes in technologies and procedures associated with 
NextGen operations.  These are the types of changes that we believe the FAA will want to evaluate 
using human performance modeling.  This section summarizes by identifying relevant NextGen 
human performance concerns, and how modeling can be used to address them. 
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“Super density operations” (SDO) is a term with several meanings within the air transportation 
research domain. It is one of eight key capabilities identified by the Joint Planning and Development 
Office that define the proposed Next Generation Air Transportation System vision (JPDO, 2007). 
SDO also defines a research focus area for NASA’s NextGen Air Traffic Management (ATM) 
Airspace Project. SDO has also become a fairly generic term to describe the uniquely constrained 
and complex challenge of operations at, and near, major airports and terminal area airspace. The 
characteristics of SDO operations which set it apart from the other air transportation research 
domains reflect the density and complexity of the operations, the relative immaturity of research to 
date to address this complexity, the degree to which weather cannot be easily avoided, and the 
constraints applied by environmental considerations which are not as prevalent in the enroute 
operational sphere (which has been more fully studied, and is a more mature research discipline). 
 
The key to NextGen SDO and what makes SDO so important is that it will enable increased traffic 
flows at congested airports without the need to construct new runways, which are very expensive, or 
even new airports at busy metroplexes, which are even more expensive and may be impossible due 
to the lack of available land. 
 
The following are some of the SDO concepts and technologies intended to make better use of the 
scarce resources – runways and airspace – at the U.S.’s largest airports: 
 

• Closely spaced aircraft – separations reduced to much less than today’s standards due to 
better resolution of aircraft positions and better information available on flight decks that will 
help avoid midair collisions and wake vortex encounters (see next bullet). 

• Wake vortex information – since current separations are conservative, due in part to the need 
to avoid wake vortices, reduced separation will require real-time data on wake vortex 
generation and dispersion. This will require sensors and models to measure and predict wake 
trails. 

• Paired aircraft - a “daisy chain” of paired leader-follower aircraft, especially on arrival and 
approach.  With more traffic information available on flight decks, airport operations can be 
conducted in almost any weather condition as if it were a clear visual meteorological 
conditions (VMC) day, where, in current-day operations, airliners follow each other to the 
landing runways. Pairing allows for closer traffic spacing and a smoother arrival flow with 
less workload for air traffic controllers, managers, and pilots. 

• Very closely spaced parallel approaches (VCSPA) – this might involve paired aircraft, or it 
might involve groups of three aircraft. These three would be very closely spaced (e.g., 750 
feet lateral separation), and the following group of three would be about 2 minutes behind 
them. This procedure, again, makes better use of the spacing in current-day operations. 

• Trajectory based operations – aircraft will be assigned four-dimensional (4D) trajectories (3 
spatial dimensions plus time) and expected to meet path and time requirements. Several 
NextGen concept developers cautioned that there is much uncertainty in how rigid these 
requirements will be. The 4D “tunnel” might actually be quite large, and it is currently not 
known what time precisions will be required. 

• Weather information – to help ensure that trajectories are achievable, real-time weather data 
will be provided to ATM and pilots. Since weather is a major factor in reducing airport 
departure and arrival rates, making real-time weather data and information available will 
allow for anticipation of weather-related delays and the application of suitable contingency 
plans in a timely and more efficient manner. 
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• Continuous descents & ascents – for environmental and economic reasons, leveling-off 
flight will be minimized. Level-offs will be limited to the cruise phase. The more time spent 
by aircraft at low altitudes, the more fuel burned by those aircraft. 

• Datalink communication with ATM – rather than voice communication, NextGen 
communication will be electronic, visual, and text-based (like instant messaging or email).  
The benefit to this technology is that complex clearances, such as directions for paired 
approaches or 4D paths, can be communicated more quickly and accurately, and then easily 
loaded into the aircraft flight management system (FMS). The downside to datalink 
clearances is the added visual workload for the pilot, and the fact that mistakes can be more 
easily over-looked and propagated. Therefore, error (e.g., keyboard entry) and logic (e.g., is 
there a more efficient path?) checking seem essential to take full advantage of this capability. 

• Uplinked taxi information – taxi clearances will be provided via datalink before the aircraft 
lands, thus minimizing the time spent between the runway and parking gate. 

• Equivalent visual operations – electronically-generated out-the-window view (with 
synthetic or enhanced vision displays and real-time sensing capabilities) will potentially 
reduce decision height, and hence better preserve landing capabilities in low visibility. 

• Mixed equipage operations – many different aircraft with many different capabilities will 
(potentially) mean prioritized flights, perhaps segmented airspace or timeslots.  This has the 
potential for blunders into airspace, and pilot or ATM errors regarding aircraft capabilities. 
In current-day operations, aircraft without specified capabilities are not allowed into the most 
congested airspace (i.e., Category B airspace), so keeping less capable aircraft out of 
metroplex airspace should improve efficiency.  The “flip side of this coin,” though, is that 
when insufficiently equipped aircraft blunder into more tightly controlled airspace, it is likely 
that such blunders may cause major delays, inefficiencies, and other impacts. 

• Performance based services – In the evolving and future (e.g., NextGen) airspace, there are 
anticipated to be a larger number of different airplane equipage capabilities, such as those 
enabling self-separation. Similarly, current operations accommodate different levels of 
required navigational performance (RNP) such that greater precision can enable more 
economical operations and trajectories. 

• Self-separation – Aircraft with particular equipment (e.g., the future equivalent of automatic 
dependent surveillance-broadcast [ADS-B] and a cockpit display of traffic information 
[CDTI]), will be able to carry out tactical maneuvers to maintain separation from other 
traffic, in the absence of positive guidance from ATC. 

• Metroplexes – capacity increases will be met by groups of airports that effectively function 
as one large airport (e.g., Newark, LaGuardia, and JFK; or San Francisco, San Jose, and 
Moffet Field). This may mean more complex traffic patterns into and out of the airports, but 
more efficient operations overall. 

• Net-centric operations – NextGen will rely heavily on computerized information systems 
(e.g., route planning capabilities for 4D trajectories, digital maps, pilot-ATM and pilot-pilot 
communication, replanning and rerouting capabilities, synthetic vision generation, weather 
and wake vortex updating and visualization) and the timely exchange of information. This 
need implies that computing power on the flight deck will need to be much greater than 
current standards, and that cyber security (i.e., network security) is extremely important. 

Most of these NextGen concepts will require that additional information is displayed on the flight 
deck. While the form of this information (what it will look like) and its location (if it will be 
integrated into existing displays, or presented on a new display) are uncertain, the project team 
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assumed that the following information sources are available on the NextGen (circa 2025) flight 
deck: 
 

• Datalink text and possibly graphical messages 

• Wake vortex (WV) information  

• Integrated weather information (Note: this is currently on the Navigation (NAV) Display in 
the Boeing 777.) 

• Vertical situation display (VSD) 

• Location of, and separation from, other aircraft, with particular focus on the lead aircraft 
(providing coverage beyond the traffic collision avoidance system, TCAS, display) (Note: 
this is currently included on the NAV display of the B-777.) 

• Equivalent visual operations (EVO) using synthetic vision system (SVS) or enhanced vision 
system (EVS) information located on a head-up display (HUD) or other flight deck display 

• Uplinked taxi clearance (provided via datalink and/or a dynamic airport surface map or head-
up display) 

• Runway Awareness and Advisory System (RAAS) 

• Merging and Spacing 

• Electronic Flight Bag (EFB) 

• Cockpit Display of Traffic Information (CDTI) 

• Higher levels of flight deck automation, particularly within the FMS, to assist decision 
making 

1.2.2 Modeling Concerns Related to NextGen 
As the above lists indicate, NextGen operations are associated with a variety of changes to the NAS.  
These changes affect the allocation of responsibilities, the use of new technologies and automation, 
additional information presented on the flight deck, and the entire ConOps.  A recent integration of 
human-factors-relevant NextGen research identified nine main human performance factors to 
consider in NextGen operations:  attention allocation; decision making and mental modeling; 
communication; memory; workload; interaction with automation, decision support tools, and 
displays; potential errors and recovery from human errors or system failures; organizational factors; 
and selection, certification, and training (Lee, Sheridan, Poage, Martin, Jobe, & Cabrall, 2010). In 
this report we review and classify existing models to assess the extent that HPMs are capable of 
addressing each of these NextGen-relevant human performance parameters (note, however, we focus 
on the first seven issues listed above, as organizational factors, selection, certification, and training 
are beyond the scope of pilot performance models). 
 
Modeling provides a capability to examine potential changes to a system design before these 
changes are introduced.  This allows analysts to predict the effects on operator and system 
performance, and to identify and remediate problems.  However, models vary in their abilities and 
their approach to modeling these human performance factors (e.g., some focus on cognitive 
processing, others focus on discrete tasks performed by a human, while others consider perceptual 
processes), and in terms of their associated validation efforts. The challenge for the FAA is in 
evaluating the variety of pilot performance models and modeling tools to identify those that are best 
suited to addressing these NextGen human factors issues.   
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2. Identification and Classification of Models and Model Validity 

2.1 Identify Available Pilot Performance Models  
The current effort comprehensively reviewed the current literature to identify all relevant HPMs 
that have been applied to assess pilot performance and which have, or can be, extended to 
evaluate NextGen operations.   

2.1.1 Methods 
The team identified a wide variety of sources that described aircraft pilot modeling and 
validation efforts for the initial pass.  These sources included professional journals, conference 
proceedings, and reports from specialist working groups.  Table 2.1 lists the sources that were 
included in the search.  A relevant set of keywords was developed and used to search among the 
sources; these are provided in Table 2.2. The focus of the initial data gathering was on pilot 
performance models.  More general models of human performance or human error, and specific 
models of air traffic management and unmanned air vehicle control were excluded.  Further, 
models that were based on pilot performance during training, and used for personnel selection, 
were considered not relevant, and were also excluded from this data set.    
 
Table 2.1:  Sources of Articles Describing Pilot Modeling Efforts    
Source Location 

A Review of Human Performance Models for 
the Prediction of Pilot Error  

http://humanfactors.arc.nasa.gov/ihi/hcsl/p
ublications/HumanErrorModels.pdf 

Advanced Simulation Technologies Conference http://www.scs.org/confernc/astc/astc04/cf
p/astc04.htm  

Advanced Simulation Technologies Conference http://www.scs.org/confarchive 
 

Agents and Artificial Intelligence http://www.icaart.org/  

American Institute of Aeronautics and 
Astronautics (AIAA) Proceedings  

http://www.aiaa.org/content.cfm?pageid=4
06  

An HCI bibliography site http://hcibib.org/bibtoc.cgi?abstracts=true
&file=bibdata/HFES10*  

Annual Conference on Manual Control  CDs – Conference proceedings  

Applied human factors and ergonomics (AHFE) http://www.ahfe2012.org/  

Artificial intelligence http://www.aaai.org/Conferences/conferen
ces.php  

Aviation Space and Environmental Medicine www.ingentaconnect.com 

BRIMS Proceedings http://brimsconference.org/  

Citeseer  www.citeseerx.ist.psu.edu/viewdoc/   
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Source Location 

Cognitive Engineering and Decision Making  www.ingentaconnect.com 

Cognitive Engineering in the Aviation Domain Book (Sarter & Amalberti, Eds., 2000) 

Digital Aviation Systems (DAS) Conference 
Proceedings 

http://ieeexplore.ieee.org/xpl/conhome.jsp?
punumber=1000202    

Ergonomics in Design www.ingentaconnect.com 

HCI Aero Conference Proceedings Subscriber database  

Human Computer Interaction International 
(HCII) 

http://www.hcii2011.org/   (2011) 

http://www.hci-
international.org/index.php?module=confer
ence&MMN_position=4:4   (previous 
years) 

Human Factors and Ergonomics Society 
Conference Proceedings 

www.ingentaconnect.com 

Human Factors Journal (HFJ)  www.ingentaconnect.com 

Human Performance Models in Aviation  Book (Foyle & Hooey, Eds., 2008) 

Human Performance Situation Awareness and 
Automation (HPSAA II) 

CDs – Conference proceedings 

IEEE International Conference on Systems, 
Man, and Cybernetics (IEEE SMC) 

Subscriber database 

International Journal of Applied Aviation 
Studies 

http://www.faa.gov/about/office_org/headq
uarters_offices/arc/programs/academy/jour
nal/  

International Journal of Aviation Psychology 
(IJAP) 

www.informaworld.com   

International Journal of Human Factors 
Modeling and Simulation 

Subscriber database 

International Society for Human Simulation http://www.societyhumansimulation.org/co
ntent/about-ishs 

International Symposium on Aviation 
Psychology (ISAP)  

CDs – Conference proceedings 

Model Based Analysis of Human Errors During 
Aircraft Cockpit System Design (European 
Union Project) 

http://www.human.aero  
(many articles were available on 
www.mendeley.com)  
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Source Location 

NASA Human Centered Systems Lab page – 
publications (contractor reports that went into the 
Foyle & Hooey (2008) book Human 
Performance Modeling in Aviation) 

http://hsi.arc.nasa.gov/groups/HCSL/public
ations.html#HPMPubs  

NASA Technical Reports Server  http://ntrs.nasa.gov   

National Research Council http://www.nap.edu/catalog.php?record_id
=12169    

NATO human behavioral modeling ftp.rta.nato.int/public//PubFullText/RTO/M
P/...///MP-HFM-202-P08.doc  

Proceedings of the World Aviation Conference Identified as references in other articles – 
did not find a website or document. 

Sim Solutions Conference Proceedings CDs – Conference proceedings 

SOAR Reports http://sitemaker.umich.edu/soar/home  

Theoretical Issues in Ergonomic Science http://www.tandf.co.uk/journals/ttie 
Subscriber database  

Web sources for HOS and SAMPLE Google search 

Winter Simulation Conference CDs – Conference proceedings 

 
 
Table 2.2:  Keywords used in the Data Gathering Effort 
Keyword AND Other Keyword 
Aerospace  Model / Simulation 

Aviation  Model / Simulation 

Pilot  Model / Simulation  

Pilot  Workload / Error / Errors / Performance / Models / Modeling / Modeling / 
Behavior model 

Predicting  Pilot performance 

 

2.1.2 Results 
The team compiled a database of the existing pilot performance models and relevant validation 
efforts.  The initial pass revealed 449 potentially relevant articles.  A second pass review was 
conducted, which consisted of identifying 1) duplicate articles, 2) nearly identical articles (e.g., 
same set of authors presenting similar research at two different conferences), 3) models that 
addressed air traffic management (ATM) rather than pilot performance, and 4) articles that 
focused on empirical studies of pilot performance without including or addressing a 
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corresponding pilot model.  When this second review was completed, the list of articles was 
reduced to 187.  The final list of articles, with full references, is provided in Appendix B. 

2.2 Classify Pilot Performance Models 

2.2.1 Develop Classification Scheme  
The team identified a preliminary set of coding criteria or features to characterize models. 
Through the iterative process of reviewing papers that summarize modeling efforts, applying the 
coding, and identifying problems (categories that were not relevant, issues that were not captured 
in the criteria), the team developed a final set of coding features and criteria, presented in 
Table 2.3.   
 
Model features used in this evaluation belong to one of three general classes.  First there are 
descriptive features that have no evaluative (e.g., “better” or “worse”) connotation to them, such 
as the type of model (e.g., simulation versus equation).  This defines class A.  Second, there are 
features we refer to as “criteria”, whose rating for any particular model does implicitly or 
explicitly suggest greater or lesser value or relevance to the FAA.  For example, all other factors 
being equal, a validated model is more valuable than an unvalidated one.  This second general 
class of evaluative features can be further subdivided.  One set of evaluative features (class B) is 
related to the quality of the model validation efforts, including such items as how close the 
population in the validation experiments is to commercial pilots, as well as the degree of success 
in the validation effort, in terms of the model’s ability to accurately predict pilot performance.  
These are features that will be applied to the relevant models in this final report.  A third set of 
evaluative features (class C) includes those features that are important in assessing the overall 
value or utility of the model to the FAA, but are not related to validation and, in general, are 
features such as usability and software support that the current research team cannot readily 
evaluate within the scope of this project.  Regardless, these are criteria that the FAA may want to 
consider when selecting models.  The list of features, of all three classes was based upon a 
CSERIAC report (Wickens, Vincow, Schopper, & Lincoln, 1997).  These original criteria, along 
with other model features, were iteratively refined with team member input, based on lessons 
learned while reviewing the literature and specific requirements related to NextGen. While class 
C factors were not evaluated systematically for each modeling effort, this report does identify 
relevant information on accessibility and support in Section 4.  
   
Altogether 12 features were defined to characterize each separate research paper that examines a 
pilot performance model, with each categorical feature having a number of different levels, and 
shown in Table 2.3. Features 1-3 are descriptive (class A), and features 4-9 are evaluative (class 
B) features, and features 10-13 are additional or utility (class C) features. These features are 
described below. 
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Table 2.3:  Pilot Model Classification Features:  Factors, Codes, and Meanings   
Evaluation Factors Code Meaning 

Class A:  Descriptive Features 

1. Type of modeling effort   

 Si  Simulation 

 An  Analytical 

 Re   Regression equation 

 Q   Qualitative 

2. Aspect of pilot 
performance modeled  
[not mutually exclusive] 
Those aspects indicated 
with a * are selected for 
a deep dive appearing in 
Section 3. 

  

* A Automation interaction 

 C Communications 

 D Decision or judgment 

* E Error 

 MC Manual Control 

* MT Multi-task (task sequencing, multiple 
resources) 

 P Procedures 

* SA Situation awareness 

 SD Spatial disorientation 

 V Vision, visual attention, scanning 

* W Workload 

* R&R Roles & Responsibilities 

3. Model name (if 
appropriate) 

  

Class B:  Evaluative Features 

4. Empirical data available   

 Y Yes 

 N No 
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Evaluation Factors Code Meaning 

5. Validation measure   

 C Correlation 

 Q Qualitative 

 O Other 

6. Correlation parameters   

 Value (0.XX) 

 Sample size Number of data points (not number of 
subjects) 

7. Correlation methods   

 BC Between conditions (collapsed across 
subjects) 

 SAC Between subjects and conditions 

 CWS Between conditions and within subjects 

 Other Not specified, or another technique used 

8. Population   

 TP Transport Pilots (includes commercial, 
corporate, and cargo transport) 

 NP Not pilots 

 FP Fighter pilots 

 OP Other pilots (e.g., general aviation, 
helicopter) 

9. Test bed   

 L Laboratory 

 PC PC flight simulator (mouse / joystick) 

 FS Flight simulator (pedals / yoke) 

 AP Airplane 

Class C:  Additional Criteria 

10.  Cognitive plausibility   

11.  Usability   

12.  Availability   
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Class A:  Descriptive Features 
Feature 1:  Type of modeling effort.  The modeling papers in the analysis were classified 
according to model type.  The model types included simulation, analytic, regression, or 
qualitative.  Simulation models produce differing results due to performance distributions and 
built-in randomness.  Analytic models are algorithms or equations that yield a single set of 
results for given input parameters.  Regression equations are quantitative explanations of 
performance, and qualitative models predict non-numeric aspects of performance (e.g., better or 
worse). A qualitative model is simply a description of processes that contains no component that 
will generate numerical output. 
 
Feature 2: Aspect of pilot performance modeled. After reviewing the available models, the 
aspect categorization appeared to encompass all models, and each term provided a useful 
aviation-relevant description that could also be associated with keyword searches. It was 
important that these categories not be mutually exclusive. For example a model designed to 
assess situation awareness could be tailored, in a particular application, to predict errors in 
situation awareness, and hence might also receive classification as an error model (for that 
application). Indeed we found several models that addressed multiple aspects. We note that the * 
aspects within the left hand column are those selected for a more intense deep dive, following 
consultation with our sponsors at the FAA midway through the project. 
 
Feature 3: Model name.  Several of the models we review depend upon the same fundamental 
architecture, and are often associated with a particular name, such as ACT-R or MIDAS.  Where 
relevant and available, this is called out as a separate feature of model description, to aid 
searching and classification. These architectures are reviewed in detail in Section 4 of the report. 
 
Class B:  Evaluative Features 
Feature 4:  Empirical data available.  Here we determined if empirical human performance data 
were reported in the paper, that could be directly employed (or were employed) to evaluate the 
model. Thus in some cases a paper reported data, and a model, but the data were not to be 
predicted by the model. Here the classification would be “N”.  A “Y” rating was reserved for 
those cases where data were available to evaluate the quality of model predictions. 
 
Feature 5:  Validation measure.  The correlation measure is self-evident. A qualitative validation 
might include a statement like: “the pattern of errors predicted by the model was quite similar to 
that shown by the pilots.”  In some cases, the model predictions and data were reported in such a 
way that a quantitative estimate could be derived by the reader of this report. Further details 
regarding the use of correlation for validation are included in Section 2.2.3 and Appendix A. 
Issues related to defining validation are discussed in Section 2.2.3 below. 
 
Feature 6:  Correlation parameters.  These numerical terms describe the results of a validation 
study, through the value of the correlation and the sample size.  The sample size does not refer to 
the number of participants in the study, but rather the number of conditions across which the 
bivariate point of a [model prediction – PITL data point] could be determined (e.g., 3 conditions 
of weather; n=3). 
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Feature 7:  Correlation method.  The most desirable model validation is one that predicts mean 
pilot performance (e.g., errors, workload) across two or more different conditions, and such 
difference is captured by the model. For example, if a validation effort examines error prediction 
in four different NextGen procedures, the model would predict error rate for each of these four, 
and the validation experiment would generate actual pilot errors observed for the four procedure 
conditions.  A correlation (N=4) of predicted versus obtained error rates could be computed.  
This aspect of correlation validation is described as “between conditions” (BC).  This measure is 
desirable because it captures the variance accounted for by the model (r-squared) independent of 
N, so long as N >2). If the bivariate data set from which the correlation is obtained includes not 
only differences between conditions, but also the observable data from different pilots, this is 
described as subjects and conditions (SAC).  If a set of different conditions is validated multiple 
times, once for each subject pilot (e.g., generating N scatter plots & correlations, where N is the 
number of pilots), then the code CWS (conditions within subjects) is applied. 
 
Features 8 and 9 (Population and Test-bed) are both self-evident in their descriptive labels, but 
each can be considered evaluative, in the sense that some levels on each of the two features (e.g., 
population of commercial pilots, test bed on a high fidelity commercial aircraft simulator) make 
the study more realistic and therefore of higher relevance to the FAA than studies employing 
less-representative populations or test-beds. 
 
Class C:  Additional Criteria 
Feature 10.  Cognitive plausibility describes the extent to which parameters and variables in the 
model replicate, mimic or are linked to processes known from human psychology.  Making this 
type of determination requires understanding how the model predicts human performance, and 
the theoretical underpinnings of these predictions.  The evaluator must decide if the model 
provides a reasonable interpretation and instantiation of this theory.  
 
Feature 11.  Usability: This feature describes many aspects of the usability of the model:  to what 
extent are the parameters to be entered well explained in a model manual or guide; to what extent 
developers have produced an easy-to-use interface.  These types of evaluations should be made 
by reviewing the model, attempting to enter data, and attempting to make sense of the 
commands.  General evaluative rules are that more usable models offer graphical user interfaces 
and provide on-line help and documentation such as user manuals.  Less-usable models require 
programming expertise and do not offer readily understood documentation.  The ability to attend 
training is another important factor to consider.  Modeling tools are typically complex (i.e., they 
are not “walk up and use” systems).  A modeling tool for which training is readily available 
might be a better choice than one for which no training is offered. 
 
Feature 12.  Availability. This describes the extent to which the model can be applied from a 
readily available product (i.e., commercially available or government product).  Some products 
are available online, but these are frequently provided without extensive user support.  Other 
issues to consider include the year the software was developed (more recently developed 
products are typically better than those that have not been changed in a couple of decades), and 
the type of support that is available to users.   
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A table that presents a qualitative comparison of the extent of verification and validation across 
modeling efforts that were reviewed in the deep dive analysis was generated and is presented in 
Section 3.6 to enable an “at-a-glance” review of the model set considered. 
 
It would also be possible for readers of this report, to carry out a more extensive evaluation of 
different models based upon the additional criteria for relevance to NextGen.  This score could 
be weighted, based on differences in importance of different features, or unweighted (a simple 
summation).  As noted however, it will not be our intention to score models on Class C features.  
We do intend, however, to elaborate on the descriptions of these criteria, to assist the FAA in 
evaluating models according to these features.  

2.2.2 Classify Models  
Each of the 187 articles identified in our search was reviewed and coded according to the 9 Class 
A and B features listed above.  These categories represent a set of factors by which models and 
validation efforts can be characterized.  In some cases, two independent sets of codes were 
applied to a single article if that article reported two or more validation experiments of a single 
model or if the paper presented two or more models that were validated using different aspects of 
a single data set.   
 
A sample of 31 coded articles was selected for a round of independent coding to assess inter-
rater reliability.  Of these 31 articles, there was perfect agreement between the two raters on 28 
of the models, indicating a reliability of 90.3%.  The three discrepancies were resolved. 
 
The list of sources used in this evaluation is provided in Appendix B.  Further, all sources, and 
the ratings associated with them, are included in a spreadsheet entitled: 
FAA_HPM_Annex11_Deliverable.xls. This is available from the first authors upon request 
(cwickens@alionscience.com, or asebok@alionscience.com). 

2.2.3 Define Validation 
The focus of this research on model validation requires operational definitions of terms. We 
consider the term “model” here to be defined as in two National Research Council books:  
 

“Human….behavior…represented by computational formulas, programs or 
simulations” (Pew & Mavor, 1998) and  
 
“A representation or description of all or part of an object or process” [p11] 
(Elkind et al., 1990).   

  
In particular, the second of these references goes on to describe the functional use of models in 
human factors to be to “answer questions about the ability of the human to function satisfactorily 
in the system, and the ability of the system to achieve the objectives for which it is being 
designed” [pp3-4]. While Elkind et al. (1990) place their emphasis on simulation or Monte-Carlo 
models which can be run, and include an aspect of randomness or distributions in performance 
parameters, we expand our search here to include that which Pew and Mavor (1998) refer to as 
computational formulas, and Wickens, Vincow, Schopper and Lincoln (1997) describe as 
“analytic models”.  Analytic models are equations that predict performance based on certain 
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input parameters, but they do not include an aspect of randomness and do not require repeated 
iteration of model runs to generate that randomness or expected distribution of performance 
parameters.  The same input conditions will provide identical results. 
 
The operational definition we use for “validation” is equally important, and here we rely on Pew 
and Mavor (1998) to define validation as showing “that the model accurately represents 
behavior in the real world under at least some conditions” [p4, italics ours].  As such, this 
definition closely reflects what Leiden and Best (2008) describe as “results validation,” or “the 
ability of the model to provide sound predictions within certain bounds” [p278].   
 
In contrast to validation, verification involves providing “proof that the model actually runs and 
meets the design specifications” [Pew & Mavor, 1998, p278], or that the model “performs as 
intended by the modeler” [Leiden & Best 2008, p278]. This may include sensitivity tests, in 
which model outputs are generated across a range of different parameters. There is in fact 
somewhat of a fuzzy boundary between verification and qualitative validation. However in 
general we refer to qualitative validation as those judgments made by personnel other than the 
modeler developers themselves (e.g., pilot SMEs). 
 
While verification is typically necessary for the success of a model, our focus in this report is 
more directly targeted at results validation.  We are concerned with addressing questions such 
as:   
 

• Does the model predict variance of real-world pilot behavior?  

• Across what conditions are those predictions made (e.g., all of the conditions predicted 
by the model, or a limited subset)?  and  

• What is the metric by which the degree of prediction between model prediction and pilot 
performance data is expressed?  Here of course a distinction can be made between 
whether such a prediction is available (and this, by definition, requires reporting of some 
pilot-in-the-loop data) and how successful that prediction is.  Determining the latter 
requires the authors of this report to provide some evaluation of the metric used, and its 
predictive value (e.g., correlation level between model-predicted and obtained data) in a 
particular evaluation study.  Model validation evaluation is described in more detail in 
Appendix A. 

 
The expressed desirability of the product moment correlation, r, when computed between 
conditions (BC, for feature 7, Correlation Method, above) results from the fact that this is the 
best measure of the extent to which variance between conditions predicted by the model are 
actually observed in performance. The presentation of the scatter plot upon which the correlation 
is based, in addition to the r value, is important because it allows the reader and model-user to 
visualize which conditions may be over or under predicted by a model, or whether a high 
correlation value results because of the contribution of only a single outlier (See Appendix A).  
 
The reporting of the significance level of the correlation, while sometimes desirable, is not 
necessary when N is small. The low N will often “guarantee” non-significance, when the pattern 
of prediction evident in the scatter plot and r value may be extremely meaningful. For example, 
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consider a validation with only four conditions (N=4) defined by 2 levels of NextGen technology 
by 2 levels of workload that yields an r of 0.80.  While this may not lead to a “significant” 
correlation, its high value certainly suggests that the model is effective in predicting variance 
between conditions. 
 
Finally, we wish to emphasize the important distinction between saying a particular modeling 
effort has not been validated versus a model is “invalid”. The “not yet validated” situation 
occurs for a variety of reasons, including the fact that sometimes, particularly for systems under 
development such as NextGen, the necessary technology to accomplish a validation has not yet 
been implemented in a flight simulation.  Even though the model predictions cannot be validated, 
they are still important and useful.  In contrast, to say that a model is “invalid” (a 
characterization that we do not use in this report), would imply that over repeated validation 
efforts, its correlation with empirical data is near 0. 

2.2.4 Assess overall Validation Efforts across all Model Aspects 
The number of models that could be fit into each category (e.g., manual control, error) was 
tallied based on the assigned pilot performance modeled category.  A given model validation was 
sorted into more than one category if it cut across multiple categories (e.g., a model of pilot 
visual scanning of a flight management system could be coded as both Automation and Vision).  
Table 2.4 lists the frequency count within each of these categories, along with a second column 
that reports the number of studies that were considered to have validation data.  
 
Table 2.4:  Types of Models and Validation efforts – Total Numbers and Percentages.  
Performance Modeled  Number Number 

Validated 
Percent 
Validated 

Error 17 9 53 
Workload 14 See below  
Multi-task (& task management) 19 See below  
Workload & Multi-task*      (33) 14 42 
Situation awareness 15 3 20 
Pilot-automation interaction 16 8 50 
Communications 7 0 0 
Decision-making 22 6 27 
Fatigue 3 2 67 
Manual control 30 20 67 
    
Procedural 26 5 19 
Roles & Responsibilities 12 3 25 
    
Spatial disorientation 1 0 0 
Visual 49 31 63 

    
SUM 231 101 43% 

*  Workload and multi-task were pooled because of the close overlap between the two constructs, and occasional 
difficulties in discerning whether workload or multi-tasking predictions were validated. See Section 3.2 for further 
explanation. 
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The overall statistics revealed that of the 231 samples, 43% were validated (calculating the 
unweighted average).  The number of samples here was greater than the number of studies, 
because some models were coded into multiple categories.  A few noteworthy aspects of the data 
concern the 0% validation rate of the 7 communications models and the relatively low (25% or 
less) validation rate of procedural models and models of situation awareness and roles and 
responsibilities. 
 

3. DEEP DIVE ANALYSIS OF SIX MODEL ASPECTS 
The following “deep dive” sections include reviews of papers that were analyzed in detail and 
included in the spreadsheet.  These are the references that are included in the summary tables 
throughout this document (e.g., Table 2.4, Table 3.6, Table 4.1), and – for each individual deep 
dive – they are identified in a reference list at the end of that particular section. 
   
In addition, each deep dive also includes references that were not included in the project 
spreadsheet or summary statistics.  These were excluded from the analysis for various reasons 
(e.g., they reported an essentially duplicate effort summarized in another [included] paper, or the 
paper did not actually include a model of pilot performance), but they were relevant to, and 
therefore referenced in, the deep dive sections.  These are not included in the reference list at the 
end of the section, they are not in the spreadsheet, nor are they included in the summary statistics 
in this document.  They are, however, presented in the full reference list at the end of the 
document. 
 

3.1 Models of Pilot Error 

3.1.1 Introduction 
This section describes a “deep dive” review of the pilot performance models that specifically 
addressed error to identify common themes among those modeling efforts.  While this review 
specifically evaluated human error models that have been applied to pilot performance, it should 
be noted that Leiden et al. (2001) reviewed HPMs that address the broader category of human 
error.  These tools could potentially be used to model pilot error.  It should be noted that the type 
of error that can be modeled by the respective piece of software does depend on its underlying 
psychological principle (if existent).  
 
In reviewing the variety of models to address pilot error, it is important to consider how errors 
occur and how they are modeled.  For example, Leiden et al. (2001) identified a set of error 
taxonomies, including:  situation awareness errors (errors in detecting, comprehending, or 
predicting based on data), models of internal human malfunctions (errors in terms of operator 
factors such as goal setting or strategy selection), models of unsafe acts (Rasmussen’s skill-
based, rule-based, and knowledge-based errors), and information processing models (which 
simulate human cognitive processes of detection, recognition, decision making and action 
selection).   
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3.1.2 Human Reliability Analysis 
A set of 3 papers by the Salmon and Stanton group (Salmon et al., 2002; Stanton et al., 2003; and 
Salmon et al., 2003) all evaluated different means of classifying pilot error, with a focus on the 
Systematic Human Error Reduction and Prediction Approach (SHERPA).  The validation is 
accomplished by comparing the kinds of errors that SHERPA (and two other comparable error 
taxonomies) would predict as SHERPA was exercised by a sample of students, with errors that 
were predicted to occur by pilot subject matter experts (SMEs). Both predictions were made 
within an auto-land flight scenario.  Note that these were not errors actually observed as no 
simulation was flown, so that it constituted a qualitative validation. A validity score was reported 
in terms of the hits (errors that were predicted by SHERPA which were also predicted by SMEs) 
and misses (errors predicted by SMEs not predicted by SHERPA).  Scores indicate about 75% 
validity. That is, 75% of the SME-identified errors were predicted by SHERPA. 
A paper by Miller (2001) presented the Aviation Safety Human Reliability Analysis Method 
(ASHRAM), also heavily founded on the principles of human reliability analysis.  The paper 
presents ways for predicting plausible error-inducing conditions on the basis of a three-stage 
model of pilot information processing (perception, cognition, action), and the influence of 
performance shaping functions.  It can be used prospectively to predict these error-likely 
conditions, or retrospectively in mishap analysis, to understand how breakdowns in pilot 
information processing could have played a role.  The paper does not offer quantitative 
predictions (e.g., of the relative likelihood of different kinds of errors, or the estimated likelihood 
of error in different scenarios) nor are validation data provided. 

 

3.1.3 Procedural Risk Models   
A set of four papers developed at NLR (Netherlands Aerospace Research Lab), by Blom, Stroeve 
and their colleagues was centered around one generic model – TOPAZ (Traffic Organization and 
Perturbation Analyzer;  Stroeve, Blom, & Baaker, 2011;  Stroeve, Blom & Baaker, 2009;  
Stroeve & Blom, 2005;  Blom, Corker, Stroeve & van der Park, 2003) – and one specific 
application:  predicting runway incursions resulting from one aircraft failing to stop at an 
intersection where another was on a takeoff run.  The focus of the model was to predict objective 
risks. Thus this model incorporated component models of two pilots and a ground controller in 
their interaction.  Because it was a Monte Carlo simulation model, repeated runs predicted the 
relative frequency of these very rare events (runway collisions).   The studies report verification, 
in that the model allowed users to exercise different environmental, pilot and equipment 
conditions (e.g., high vs. low surface visibility, presence or absence of alerting systems, different 
kinds of pilot errors) to examine the influence of these factors on incursion likelihood.  
Importantly, the most recent paper by Stroeve, Blom & Bakker (2011) explicitly incorporates 
automation effects, so that the influence of human automation interaction (HAI)-related factors 
can be predicted, an element quite clearly related to NextGen.   
 
Correspondingly, the emphasis on airport surface procedures and runway incursion event is quite 
relevant to near-term NextGen concepts.  As noted, there is no validation, since there was no 
reporting of the actual observed frequency of such low probability events, as they might be 
affected by display and environmental variables.   
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3.1.4 Knowledge-Based Procedural Models   
A set of three pilot model papers, focusing on the sources of failure in retrieving procedural and 
declarative knowledge from memory were directly based on ACT-R or ACT-R assumptions (see 
Lebiere et al., 2008, for a description).  In ACT-R, the memory for and activation of goals to 
trigger actions is fallible (e.g., forgetting to activate an automation function).  Hence errors are 
generally memory failures caused by insufficient strength of the goal to generate the action at a 
particular time, or by a context that activates an inappropriate goal above the threshold where its 
actions are triggered. 
 

• The paper by Fotta et al. (2007) describes an application of the ACT-R based model 
Human Error Modeling for Error Tolerant Systems (HEMETS) to design of a fighter-
cockpit interface in predicting different forms of errors (e.g., attention, planning, motor), 
but the paper offers no validation. 

• The paper by Byrne et al. (2008) is one of a set of five papers (four others reviewed 
below) that modeled taxiway turn errors, based on data provided by NASA Ames.  
These chapters all appear in the integrative book Human Performance Modeling in 
Aviation by Foyle and Hooey.  In this database, a corpus of twelve errors committed by 
eighteen two-person pilot crews, over three scenarios each in a high-fidelity landing and 
taxi pilot in the loop (PITL) simulation scenario at Chicago O’Hare Airport was 
compiled.  The error descriptions were provided to the modeling teams, along with 
extensive other material regarding verbal transcripts before and after touch down, airport 
surface layout and timing of events (e.g., communications, passage of intersections). It is 
important to note that “the modelers were not tasked to predict the taxi error data set, the 
observed error rate, or proportion of errors for each error category.  Rather, they were 
asked to use the data set and other available information to help build solid models of 
pilot behavior that would be the foundation of a set of tools with which taxi navigation 
errors, causes and mitigations could be explored”  (Foyle & Hooey, 2008, p. 38).   

• Byrne et al. (2008) focused on decision errors in which a SME generated a set of 
decision rules that could be applied by pilots to decide when and whether to turn at a 
particular taxiway intersection.  These were implemented in ACT-R, along with 
information about differences in time stress that could lead pilots to use more heuristic 
rules (faster, but less accurate), or more formal rules (slower to execute, more accurate).  
When these were incorporated in the ACT-R simulation, errors were generated, and the 
authors report a qualitative similarity between the pattern of errors generated by ACT-R 
and those in the error database. 
 

• The ACT-R version used by Lebiere et al. (2008, in Foyle & Hooey), applied to the same 
NASA taxi-turn database, focused to a greater extent on memory errors (factors causing 
a failure to retrieve the appropriate turn information at each intersection). The authors 
stated that the model “created a diversity of errors” including errors of omission and 
commission.   An error of omission occurred when the modeled pilots could not recall a 
required taxi turn instruction due to time-based decay, leading to a missed turn.  Errors 
of commission, leading the modeled pilot to turn on the wrong taxiway or turn the wrong 
direction, occurred when the wrong taxi instruction was recalled because of interference, 
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similarity-based partial matching, priming, or activation noise.  Lebiere et al.’s model 
focused on memory errors given the nature of the HITL data, but they reported that other 
possible sources of errors including perceptual inaccuracies, loss of SA, and pilot 
distraction could also be modeled in a principled approach in the ACT-R architecture if 
enough HITL data were available. 
 

3.1.5 Error Generation Models 
• The chapter by Deutsch and Pew (2008, in Foyle & Hooey) describes a model, the 

Distributed - Operator Model Architecture (D-OMAR), which employs ACT-R-like 
processes to select procedures (or fail to select procedures).  In contrast to the previous 
two ACT-R versions, which focused on decision and memory errors respectively, this 
paper explicitly addresses and describes errors according to the Reason (1990) error 
taxonomy of slips, mistakes and violations.  Their model produced errors driven by 
expectation based on partial knowledge (e.g., an incorrect turn driven by the modeled 
pilot’s expectation that the taxi clearance would be the shortest route to the gate) and 
errors driven by habit (e.g., an incorrect turn driven by the pilot’s habit to always turn left 
to his/her gate despite an unusual taxi clearance directing a right turn). The results of the 
model simulation are presented in terms of a detailed narrative description of the kinds of 
errors, but not accompanied by quantitative validation data of error prediction against the 
error data provided. 

• “Air” MIDAS (MIDAS 1.0) (Corker et al., 2008 in Foyle & Hooey) is a full pilot model 
that has received fairly extensive validation in other model categories (e.g., workload, 
procedures, visual attention, roles & responsibilities), and those validations will be 
provided in sections 3.2 and 3.6. However one particular model effort was focused on the 
taxi-turn error data set described above.  Environment triggers (e.g., turns, signs, ATC 
calls) elicited the baseline behaviors that were predictive of human performance in 
current day operations. This served to identify risk factors that increase the probability of 
error or that could mitigate the error. Working memory decay rate and capacity, and 
timing of information availability to the operators in the simulation were modeled. Error 
rates, performance times and workload were output from the HPM. These predicted that 
errors do occur as a result of increasing decay rates and reducing memory capacity, while 
changes in the data patterns occur as a result of changes to the time of information 
availability to the crew members in the simulation. This model application included both 
memory failures and workload influences.  The authors reported that Air MIDAS is 
sensitive to memory errors including declarative memory errors (forgetting a procedure 
because of having too many procedures of the same type operating at a given time), 
memory load errors (as a result of information competing for working memory space) 
and updateable world representation discrepancy errors (which occur when the 
worldview between two operators is inconsistent). The authors describe a qualitative 
form of validation, noting consistency of the pattern of errors between model output and 
NASA-provided simulation data.  
 

• The A/SA (Attention-Situation Awareness) model (Wickens et al., 2008, in Foyle & 
Hooey) focuses on modeling visual attention, and the memory-related loss of situation 
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awareness as factors that lead to either enhanced or degraded sense of position of where 
the aircraft is on the runway surface.  (Hence their model will be listed also in those 
categories).  To the extent that SA degrades, pilots are left to use data-free decision 
heuristics (of the sort modeled by Byrne et al., 2008, described above) to decide the 
direction of turn.  Quantitative predictions of error probability are offered, as a function 
of the presence or absence of cockpit display support technology, at four points along the 
taxiway.  This provided a basis for qualitative validation, and could be compared against 
the actual frequency of errors with and without the technology; but this correlation was 
not presented in the report.    

 
• The Cognitive Architecture for Safety Critical Task Simulation (CASCaS).  A 

computational model has been proposed by Lüdtke et al. (2009) that is a full pilot 
performance model and will be described in more detail in Section 3.5.  However one 
particular application is represented to predict two kinds of errors: Learned carelessness 
and cognitive lockup.  Both predictions appear to be based on an ACT-R type learning 
mechanism as the context it simulates is of pilots repeatedly using the flight management 
system (FMS) in programming specific procedures.  As manifest in the error predictions 
reported in the paper, both types of errors are essentially errors of attention (failure to 
notice incorrect states), rather than of error generation.  This paper does not contain any 
validation data, but instead provides a verification of model-generated predictions in 
using the FMS. 
 

3.1.6 Error Detection and Recovery Models   
While the previous sections have focused on predicting the occurrence of pilot errors, two final 
papers focus on the post-error processes of error detection and recovery. 

 
• Karakawa et al. (2006) presents the pilot cognitive simulation (PCS) that models full 

pilot cognitive capabilities.  The emphasis of this simulation model is on the pilot’s 
mental model of a particular scenario.  The model predicts how well pilots will notice 
errors with and without automation enhancements to the primary flight display.  The 
authors reported that the model predicted better detection of errors with the enhanced 
display, but it is unclear how the authors compared this with the actual data (improved 
pilot performance in error detection). 
 

• Nikolic and Sarter (2003) present a qualitative flow model of recovery from errors, 
essentially defining two strategies.  A backward strategy tries to “undo” the erroneous 
action.  A forward strategy simply ignores the actions that created the error, but tries to 
recover performance to the ideal currently desired state.   Their description of the two 
strategies offers the qualitative prediction that the forward strategy will be more likely 
adopted under time pressure.  The model is validated against a set of 38 Aviation Safety 
Reporting System (ASRS) reports in which the error recovery strategy could be 
evaluated.  Of these, 75% were categorized as forward recovery.  The authors did not 
however, classify the extent to which these (and not the remaining 25%) occurred under 
greater time pressure.  However it can be inferred that time pressure was present in most 
cases (there is urgency when recovering from an error in flight), and hence the prevalence 
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of forward reasoning strategies in the ASRS database represents a form of empirical 
validation. 

3.1.7 Conclusions Regarding Pilot Error Models 
Pilot error models accounted for less than ten percent of the overall pilot models identified and 
reviewed in this survey.  Models address a wide range of error issues, including error generation, 
classification, detection, and recovery.  Models also address underlying cognitive and perceptual 
factors that affect error likelihood.  Models typically focus on limited aspects of pilot error.  Only 
D-OMAR and the human reliability analysis models appeared to have a broad focus to identify 
or predict all types of errors, rather than those of a specific class like memory retrieval failures, 
attention errors or decision failures. 
 
Of the seventeen error-model papers reviewed (those that clearly had the commitment of pilot 
errors as the focus, as opposed to other error generating outcomes, like high workload, or 
inappropriate scanning), only 9 appeared to contain data against which the models could be 
validated, and of these, none contained quantitative validation; that is, quantitative measures of 
the degree of match or “fit” between model predictions and actual error commitment, either 
predicting differences in overall error rate within different circumstances (e.g., with or without 
automation), or predicting the difference in categories of errors. 
 
Some of these models described the similarity (between predictions and pilot data) in the 
qualitative pattern of errors, and others noted that a change in predicted error rate (brought about, 
for example, by technology) could parallel a corresponding change actually or likely to be 
observed in actual pilot performance. 
 
Others (e.g., the TOPAZ models) provided precise quantitative model predictions, but no 
validation data, and still others (e.g., the SHERPA) while offering quantitative validation, used 
as performance measures for validation, the likelihood of error predicted by a SME, rather than 
the probability of error from actual pilot data. 
 
It should be noted here that the set of five different error models in the Foyle and Hooey (2008) 
book did contain more precise validation data from their models reported in a second part of each 
chapter, but that validation was not of errors per se, but of predictions of visual scanning 
performance, a model aspect not targeted for a deep dive in the current effort.   
 
In accounting for this state of affairs regarding limited validation of error models, three points 
should be noted. 
 

1. Errors generally (and fortunately) are rare in aviation, and hence it is often hard to get 
quantitative validation data for low-frequency events (but see Wickens, Hooey, Gore, 
Sebok & Koenecke, 2009, for a successful attempt to do so, for perceptual errors, and 
Nikolic & Sarter, 2003, for successful use of ASRS data).  This rarity was evident in the 
very low number of taxiway errors (12) committed in the simulation and hence available 
to the modeling teams, a number that is the numerator of a very low fraction defining 
taxiway error rate (i.e., number of errors divided by number of opportunities for errors – 
intersections crossed).  When error rate is low, then differences in error rate (e.g., across 
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conditions, or technology) will be less reliable, and it will be harder than to validate how 
well a model can predict these differences.  Naturally, validating model-predicted 
differences across extremely rare events, like the actual runway incursions, examined by 
the TOPAZ models, becomes nearly impossible.   
 

2. Errors have multiple internal (pilot-cognition) causes, as reflected by the diversity of 
processes modeled in the reports above (these processes, like memory, attention, 
decision-making, and SA were boldfaced).  Generally a particular model tackles only a 
small sampling of these processes (the full pilot models like ‘Air’ MIDAS and SHERPA 
are the exception), and hence will be incapable of predicting differences across a more 
diverse set of errors. There are several classes of models, contained in table 2.3, whose 
validation does not predict errors per-se, but rather, address operating conditions or 
precursors that are known to produce errors, such as high workload, conditions inviting 
low situation awareness, or complex procedures.  
 

3. Nevertheless, in some cases, there appears to be an opportunity for model developers to 
apply their validation to this valuable database, the corpus of high-fidelity simulation 
taxi navigation errors. The fact that this validation has not been done might be 
attributable to the added financial and time resources required, and the restriction of 
funding to support it, particularly at the end of a long project in which considerable funds 
were expended simply to understand and model the complex scenarios and generate 
model predictions. This suggests that modeling efforts should consist of iterative model 
develop-validate cycles, with early efforts taking the form of verification, moving to 
qualitative validation, and ending with quantitative comparisons to HITL data. 

 
The error models described here are clearly applicable to NextGen operations.  Based on the 
analysis of NextGen operations, the primary differences compared with current day operations 
are as follows:  the pilot’s role will shift from a manual controller of the aircraft and automation 
to a monitor of diverse automation systems.  Further, responsibility for maintaining separation 
from lead aircraft is expected to shift (at least partially) to the flight deck.  Pilots will be 
supported in this task by additional automated systems and information displays, along with 
another layer of health information regarding these systems.  Finally, routine communication 
between pilots and air traffic control will be performed by datalink, rather than verbal, radio-
based communications.  These tasks are expected to make the pilot potentially more vulnerable 
to automation-related problems (e.g., complacency, becoming out of the loop, manual skill 
degradation) and being placed in potential visual overload conditions.  However, given the 
consistency of the human operator, the basic human error mechanisms are expected to remain 
quite similar to current-day operations, so modeling tools are expected to be relevant to NextGen 
operations.  It is critical that these models be validated in conditions that are representative of 
NextGen ConOps. 
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3.2. Workload and Multi-tasking Models 

3.2.1 Introduction 
Workload may be defined as the demands imposed by tasks on the pilots’ limited information 
processing resources. Increases in workload can be imposed either as a single task becomes more 
difficult, as hand flying the aircraft through increasingly turbulent weather, or by adding tasks to 
be performed concurrently (multi-tasking). In multi-tasking, when two or more tasks are time 
shared, those tasks may compete for common resources within the information processing 
system, as when a pilot must read a data link message, and also scan the outside world; or tasks 
may utilize separate resources, as when the pilot is scanning outside (visual), while 
communicating by radio with air traffic control (auditory input). 
 
Computational models of workload predict the demands on those resources, whether from single 
or multi-task environments, and are often validated by measures of workload, such as subjective 
ratings. In contrast, computational models of multi-tasking obviously require the input of 
multiple (typically two) tasks, and predict the decrement in performance of one or both of those 
tasks, as a function of the task demands (workload of the components) and the extent of their 
competition for shared resources (Wickens, 2008b).  While many models of multi-tasking focus 
on the decrement of concurrently performed tasks (e.g., how much does communication with 
ATC degrade concurrent hand flying of the aircraft), others operate under the assumption that the 
tasks of interest cannot be performed concurrently, so their predictions are of the time at which a 
task may be performed in sequence. For example to what extent is communicating with ATC 
postponed by high turbulence, until such turbulence lessens. 
 
In the following, we describe 32 modeling efforts, categorized into five clusters of workload and 
multi-tasking models, treating both of these areas within this single deep dive because of their 
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close relationship, the fact that they are sometimes used interchangeably, and the fact that many 
models are used to predict both workload and multi-tasking fluency. 
 

3.2.2 The MIDAS Model - Channel-Specific Workload 
The closest set of studies to truly validate workload models in a NextGen context are those 
revolving around the MIDAS model developed at NASA Ames Research Center  (e.g., Gore, 
Hooey, Socash et al., 2011, Gore & Corker, 2000a, Gore, 2008). Although this model predicts 
several variables (generates output) in addition to workload, it contains within it two modules 
specifically focused on the workload concept. One is the channel-specific workload or resource 
specific workload derived from the multiple resources approach (Wickens, 2008b) where visual, 
auditory, cognitive and psychomotor (VACP) workload levels are derived and integrated. The set 
of four channels has more recently been expanded to six, now including both verbal and spatial 
cognitive channels, and both motor and speech responses; but for convenience below, we will 
describe this channel approach to workload as “VACP.” The second, more recent addition to 
MIDAS is a visual attention model (SEEV), which will be treated briefly in this deep dive, 
because this module is closely related to visual workload, the V in the VACP approach. The 
workload validation research on MIDAS can be loosely divided into to four subsets. The ‘Air’ 
MIDAS software (MIDAS v1.0; San Jose State University’s version of MIDAS used by Dr. 
Kevin Corker) utilizes the channel-specific representation to workload with a notion of 
embedded prioritization, while the most recent version of MIDAS (MIDAS v5; NASA’s version 
of MIDAS) has been applied to the aviation and other domains, implements the option of using 
either the channel-specific or the SEEV-generated characterization of workload. ‘Air’ MIDAS is 
the first incarnation of the MIDAS software while MIDAS v5 is the fifth augmentation of the 
MIDAS code base.  
 
(1) In one subset of studies (Gore & Corker, 2000a,b), ‘Air’ MIDAS addressed VACP 
predictions, associated with a variety of different cockpit configurations, automation 
implementations and procedures associated with Free Flight (an earlier concept now represented 
by the concept of self- separation in NextGen). In Gore and Corker (2000a), ‘Air’ MIDAS 
predictions of VACP workload profiles were made for 16 different configurations or 
“experimental conditions” formed by a 2x2x2x2 factorial design. These predictions were 
analyzed in a conventional ANOVA approach (variance was achieved through the Monte-Carlo 
properties of the model, with each run producing a slightly different output, analogous to the 
variance of different subjects in a HITL simulation). Differences (effects of the factors) were 
examined, and also compared with the output of a different model architecture, the Integrated 
Performance Modeling Environment (IPME). Both models showed a similar pattern of effects; 
and the effects appeared to plausibly imitate pilot behavior, thus representing a verification that 
the model performed as expected and that the procedures that were implemented reflected those 
expected in the Free Flight.  
 
In Gore and Corker (2000b), scenarios similar to those above (Free flight and conventional) were 
again run with the two models (‘Air’ MIDAS and IPME), but here the emphasis was on 
predicted VACP workload for both flight deck and air traffic control personnel. While both 
models again had equivalent predictions for the flight deck, they differed in their predictions of 
ATC workload, where the IPME predictions were much higher. An important observation is that 
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this higher prediction of controller workload by IPME may be a result of the fact that IPME, 
unlike ‘Air’ MIDAS, does not contain a task scheduler that can move tasks around in time, in 
order to prevent large workload spikes. This is a characteristic of human performance (Raby & 
Wickens, 1994; Laudemann & Palmer, 1997, Gore et al., 2013 in preparation; see Section 3.2.4 
below) that can lower overall workload, and mitigate particular episodes of peak workload. 
 
In both of these Gore and Corker studies, the model outputs were carefully examined and found 
to plausibly replicate aspects of pilot performance and workload; a good example of verification. 
However neither was accompanied by results validation against actual PITL simulation data. 
 
(2) A more recent set of MIDAS studies containing results validation data for NextGen is 
comprehensively described in the technical report Gore, Hooey, Socash et al. (2011), although 
various aspects of this effort are also described in several other papers in the published literature 
(see particularly Gore, Hooey, Haan et al. 2011, for a clear focused description of key results 
from the validation). 
 
The effort focused on a comparison between an area navigation (RNAV) approach to an airport, 
and a NextGen approach imposing increased pilot responsibility (and decreased ATC 
responsibility) for maintaining separation on a closely spaced parallel approach (CSPA). Both of 
these approach phases were modeled in MIDAS v5, and both were first subjected to what the 
authors refer to as “input validation”. That is, the model task inputs (environmental triggers, 
flight crew actions, and their sequence), and basic operator primitives, were evaluated by a team 
of SME pilots to assure that those outputs (of pilot behavior and workload) were plausible, and 
statistics were provided regarding the agreement between model-derived inputs and SME-
generated workload values. This may be described as model verification, captured by 
quantitative metrics. 
 
The full MIDAS v5 model generated two sorts of workload predictions. Channel specific 
workload was predicted along the six [visual, auditory, cognitive-spatial, cognitive-verbal, motor 
and speech; VACCMS] channels. The inputs to the model were derived from the SME estimates 
(on a 7 point scale) of these channel values associated with each specific cockpit task. MIDAS 
aggregated (averaged) these values over tasks and time. MIDAS v5 also predicted a form of 
qualitative visual workload, based on scan data and modeled by the SEEV module of MIDAS v5 
(Gore, Hooey, Wickens, & Scott-Nash, 2009; See also sections 3.1 and 3.3). It is qualitative in 
the sense of identifying the source of high scanning demands, whereas the V component of the 
VACCMS channel vector is quantitative by identifying the total amount of workload across all 
of the scanned visual channels. 
 
While MIDAS v5 predictions of workload and scanning were generated for both conventional 
and NextGen scenarios, only the former scenario was validated. For workload, this validation 
was achieved by identifying a PITL simulation (Hooey & Foyle, 2008) that collected workload 
data from three pilots on an approach similar to that which was modeled. The three data points of 
the correlation between predicted and obtained workload were the three sub-phases of the overall 
airport approach, and the correlation between model predictions of total workload  (e.g., 
averaged over channels) and the mean workload ratings of the pilots was relatively high (r=0.72).  
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For validation of SEEV, visual scan predictions from the SEEV component of the pilot model 
were generated for 3 display areas of interest (but averaged over flight phases) and compared 
with the empirical scan data for these 3 same display areas, harvested from three independently 
generated separate PITL studies (Mumaw et al., 2001; Huttig, Anders, & Tautz, 1999; Anders, 
2001), to generate 9 targets of prediction. The correlation between model predictions and 
observed scan data was extremely high (r=0.99). However note that unlike the workload 
prediction validation, the correlation was not over different conditions (phases of flight). 
 
Both workload and scan models within MIDAS v5 were then applied to the NextGen scenario, in 
which there was increased pilot responsibility for separation (in particular, monitoring wake 
vortex displays). These were generated by SMEs knowledgeable in NextGen procedures. In both 
the technical report (Gore, Hooey, Socash et al., 2011) and in Gore, Hooey, Haan et al., (2011), 
the MIDAS-predicted change in both workload and scanning brought about by this NextGen 
shift in responsibility from ground to air are presented and discussed. However these predictions 
are not compared against any actual empirical data of pilots flying with the NextGen procedures, 
so validation is not available. 
 
(3) A related effort to the MIDAS v5 predictions was carried out by Sarno and Wickens (1995) 
in that this research was funded by the NASA research program that evolved into the workload 
multi-task model within MIDAS. This validation effort helped to solidify the importance of 
channel-specific (VACP) workload; however its emphasis was on multi-task performance 
prediction, rather than workload prediction, and will be discussed in detail in the following 
Section (3.2.3).  We also note here that two other studies to be discussed in Section (3.2.3 carried 
out in a different program of research (from MIDAS), did validate model-predicted workload 
against a total (subjective) workload measure, across 8 different display/task conditions. These 
studies revealed a mean correlation of 0.53 between predicted and obtained workload (Wickens, 
Larish et al., 1989; Wickens, Harwood et al., 1988), and these efforts will also be discussed in 
more detail in (3.2.3) below. 
 
(4) See and Vidulich (1998) examined validation of a channel specific VACP workload model. 
While their target task, a combat aircraft air-ground missile attack scenario, was quite different 
from the commercial flight deck task, and their subjects were non-pilots, the study is important 
because of its use of multiple condition predictions. (See Illinois studies in (3.2.3) below). As 
with the first cluster of NASA-Ames studies that used ‘Air’ MIDAS (v1; Gore & Corker 
2000ab), a set of 8 different conditions were exercised, formed by the 2X2X2 combination of 
different missile launch display (2 dimensions)  and automation configurations. VACP channel 
values were assigned to different tasks, and then workload was calculated, after these channel 
values were summed over tasks. These predictions were validated against (a) SWAT subjective 
workload measures and (b) SART (situation awareness reporting technique); both of these multi-
dimensional assessment tools are used heavily within the Air Force laboratories where the study 
was undertaken. Surprisingly, the results revealed significant correlations between model 
prediction and the UNDERSTANDING subscale of SART (situation awareness), but not the 
resource demand subscale. Correspondingly the measures did not correlate well with the SWAT 
subjective ratings. The reasons for this lack of correspondence between model predictions and 
subjective workload estimates remain unclear. 
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A corresponding effort was undertaken by Manton and Hughes (1990), to predict VACP 
workload of helicopter military pilots in a combat mission. Data were collected from video 
analysis, and VACP time lines created. Task demands within the channels were based on the 
McCracken and Aldrich scale underlying the VACP approach (Aldrich, Szabo, & Bierbaum, 
1989). An assumption was made that demand within a channel greater than 10 created overload 
conditions (and was assumed therefore to cause performance breakdowns and warrant 
rescheduling). However no validation was provided. Furthermore, the tasks of combat during 
helicopter flight (with resultant use of combat displays) are quite different from those imposed 
on the NextGen commercial pilot. 
 
Finally, Lyall and Cooper (1992) computed (predicted) workload profiles in commercial aircraft 
pilots by aggregating SME-assigned values in three workload channels (perceptual, cognitive, 
and psycho-motor), comparing pilot and co-pilot workload on normal versus time compressed 
departures. While the profiles were presented, no validation data were provided. The prediction 
was discussed in terms of shared roles and responsibilities between pilot flying and pilot 
monitoring. This study will also be discussed in the R&R deep dive (3.5). 
 

3.2.3 Multiple Resource Conflict and Multi-Task Interference 
Another cluster of studies descend from the multiple resource model developed by Wickens 
(1980), and its derivative, the WINDEX model computing dual task interference, developed by 
North and Riley (1989). In the VACP models described in Section 3.2.2, demands within 
multiple-resource-defined channels were simply summed (or averaged) to reach an overall 
workload prediction. In the conflict matrix approach, demands of two tasks within channels that 
share more resources in common are more heavily penalized (higher predicted multi task 
workload and greater dual task interference), than channels sharing fewer resources. Thus for 
example, two visual tasks will interfere more (higher conflict) than a visual and an auditory task; 
but the latter pair will still impose a substantial degree of interference because they share 
demands on common perceptual resources; and if they are both verbal (e.g., reading while 
listening to speech) this predicted interference will be quite high, but still not maximum (see 
Wickens, 2002a, 2005, 2008a, and Section 3.2.7) for a more detailed discussion). Furthermore, 
while the modeling effort described in Section 3.2.2, was explicitly designed to predict 
“workload” (and hence, validated against subjective workload ratings), those efforts described in 
the current section are designed to predict multitask performance interference, instead of (or 
in addition to) rated workload. Several studies have explored these techniques, sometimes 
evaluating and comparing different model computational algorithms for predicting this multi-
task interference. 
 
North and Riley (1989) provide a clear demonstration of the calculations invoked in WINDEX, 
but do not employ an aviation environment. 
 
Miller (1998) employed the WINDEX version of the multiple resource model to make extensive 
predictions of multi-task flight deck workload. The paper provides an excellent description of the 
task analysis, and one form of computing conflict interference, while making multi-task 
workload predictions across a variety of cockpit interfaces. Unfortunately the results of this study 
were not validated, and the aviation environment was that of a combat helicopter, rather than the 
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commercial cockpit. A study by Wickens, Bagnall, Gosakan, and Walters (2011) like Miller 
(1998) provides a description of the application of the MRT conflict matrix to the unmanned air 
vehicle pilot’s task and cockpit design. However this was not validated against PITL simulation 
data. 
 
A set of three studies in the Illinois Aviation Research Laboratory, all have several features in 
common, and their general experimental approach is as follows: subjects (usually holding a 
private pilots’ license) performed a low-fidelity flight simulation. In two studies (Wickens, 
Harwood et al., 1988; Wickens, Larish, & Contorer, 1989) subjects flew a helicopter simulation 
low over the terrain (a very high workload task), and in the third study (Sarno & Wickens, 1995) 
they flew a simulated instrument landing system (ILS) landing (a 2-axis localizer and glideslope 
tracking task). Concurrently subjects in all three studies performed a series of aviation relevant 
decision tasks that imposed heavy multi-task workload. In the ILS task they were also 
responsible for a visual monitoring task, designed to increase workload further. The decision 
tasks typically varied in their complexity, their code (spatial vs. verbal: e.g., vectoring versus 
fuel calculations) and their display modality (auditory voice versus visual text). In some studies, 
flight task difficulty was also varied. Thus in each study a wide range of potential interference 
conditions were created in the 3 or 4 way factorial design (e.g., 8 or 16 conditions) that differed 
from each other in the extent to which common vs. separate resource demands were imposed 
between flying and decision making, as well as in the difficulty of the two component tasks 
themselves. Performance was measured by the most sensitive axis of control, vertical deviations 
from a target altitude, while single scalar measures of subjective workload were typically 
assessed. 
 
Then several variants of a multiple resource model predictions of dual task interference were 
generated. From the simplest to the most complex, these were: 
• Simple task time-line model (STL), summing the total time required by tasks and dividing by 

the time available 
• Time-line analysis procedure (TLAP; Parks & Boucek, 1989), in which penalties were added 

whenever two tasks needed to be performed concurrently. Note that this measure would be 0 
if all tasks were performed sequentially, whereas it would not be 0 under the STL algorithm 
above. The TLAP model discussed more in Section 3.2.3 explicitly penalizes time-sharing. 

• Total demand model (TDM) very much like the VACP models described in Section 3.2.1, in 
which the demand across all channels was summed to derive a total workload. 

• Undifferentiated Capacity model (UCM), in which demands were summed, but added 
penalties were imposed to this sum whenever two tasks needed to be performed concurrently 
(as with the TLAP model). 

• Multiple Resource Model (MRM) in which demand components were added to a conflict 
component that penalized interference to the extent that two tasks demanded overlapping 
resources defined by the multiple resource model (Wickens, 2008b; e.g., two visual tasks, 
more than a visual and auditory task). 
 
The collective results of these studies are summarized in Table 3.2.1 below, which presents 
the mean correlation (across studies, along with their range to show disparity) between model 
predicted and obtained measures of either subjective workload or flight task performance 
decrement. The highest values in each row are highlighted. 
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Table 3.2.1. Summary of validation efforts against workload and performance 
decrements. 

 STL TLAP TDM UCM MRM 

Workload No measure .27 [0-0.55] .61[.57-.65] .41[.21.68] .21 [.03-.36] 

Performance 
decrement 

0 .50 [.15-.87] .42 [.08-.74] .45 [.03-.77] .66 [.48-.75] 

 
What is clear from these data is that models that predict multitask performance data are not the 
same as those that predict workload (and vice versa). In particular the multiple resource conflict 
models (MRM) that predict the interference between tasks do well in such predictions, but not 
well in predicting subjective workload (see also Yeh & Wickens, 1988); whereas models based 
only on task demand (e.g, summing workload across channels) do a better job of predicting 
subjective estimates of workload, than of task interference. These conclusions were buttressed by 
more refined analysis of different model properties carried out by Sarno & Wickens (1995). 
 
Finally, a study by Riley et al. (1991, experiment 1) was quite analogous to the modeling efforts 
by Wickens, Harwood and their colleagues summarized above. Five models, of increasing levels 
of sophistication and complexity regarding VACP resource conflict, generated workload 
predictions of licensed commercial pilots flying a 737 high fidelity simulator. Unfortunately their 
validation data were restricted to NASA TLX ratings, assigned by SMEs who observed 
videotapes of the crews’ performance. Nevertheless, using these correlations across conditions 
(N=7 for the captain, N=11 for the first officer), they concluded that the additive conflict version 
of the multiple resource model was adequate, and accounted for just as much variance as more 
complex models. 

 
The latest version of MIDAS that incorporates the MRT (Gore, 2013, in preparation; see Section 
3.2.1) also now includes both conflict and demand components. This MIDAS version has been 
verified, but not yet validated.  

 

3.2.4 Time Line Analysis 
While time line analysis models were treated briefly above, we also describe them here in more 
detail because four studies have exclusively examined their predictive capabilities and these 
studies also represent the origins of the technique.  The TLAP technique is best described by 
Parks and Boucek (1989), who focus on the critical role of the ratio of: 
 

[time required]/[time-available]  (or TR/TA) 
 
within pre-defined intervals, to predict workload. When this ratio exceeds 1.0, a period of 
workload overload may be defined. The authors describe the relationship of these data to a large 
commercial aircraft full-mission simulation study, carried out jointly between Boeing and 
Douglas Aircraft companies (Boucek, Sandry-Garza et al., 1987). Importantly, Parks and Boucek 
report that when the critical ratio of TR/TA exceeds 0.8 (that is, a given interval of time is more 
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than 80% filled with tasks), “…pilots have been observed to start dropping tasks…”[p. 54] as if 
this 80% level may form some sort of a “red line” of workload overload in multi-tasking. 
However the authors offer no specific data source for this observation. Parks & Boucek also 
compute TR/TA ratios within six separate channels (visual, manual-left, manual-right, verbal, 
auditory, cognitive), and a weak form of validation is reported between workload in these 
channels, and accuracy of a secondary task carried out in the simulation (3 significant 
correlations are reported within the 6 channels), as these were both assessed in the high-fidelity 
flight simulation (Boucek et al., 1987). We say that the validation was “weak” because the 
secondary task was not a true flight task; but one meant to assess continuous auditory monitoring 
requirements (monitoring ATC communications for a call sign). 
 
A second application of Time Line Analysis is offered by Stone, Gulick, and Gabriel (1987) who 
describe in detail the applications of this technique to a comparison of commercial aircraft flight 
deck designs. Similar to Parks and Boucek, they break down the time line into specific channels 
of visual, auditory, left hand, right hand, and feet. There is no cognitive component. Workload is 
measured by the percent time that each channel is occupied with a task (summed over all tasks) 
within designated time intervals. Workload within a channel is defined similarly to the method of 
Parks and Boucek (e.g, TR/TA within each channel). No validation data are offered. 
 
A third time line application is a model developed by Muraoka and Tsuda (2006) designed to 
predict the sequence of procedures, from a combination of inputs from the flight data recorder, 
and written standard operating procedures (SOP) provided by the airlines. The model is 
incorporated in a tool called OPSAMS (Operational Procedures Safety Analysis and Monitoring 
System), and enables reconstruction of the VACP workload channels. OPSAMS has assumptions 
built-in regarding rescheduling, should channel-specific workload become excessive (see Section 
3.2.6 below; and see also Gore, 2013 in preparation). It is applied to make predictions on three 
different approach and landing scenarios, routine, time compressed, and one with flaps 
inappropriately set. No validation data are provided. 
 
The model developed by Laudemann and Palmer (1997) at NASA Ames is also one that 
essentially depends on a time-based approach (i.e., time-line analysis). Here flight deck tasks are 
scheduled according to windows of opportunity for any given task, and the workload values of 
any two tasks with overlapping windows are summed. Task urgency is used as a proxy for 
workload; urgency grows as the end of the window approaches, and this urgency function 
increases more rapidly for tasks of higher priority. These summed urgency (workload) estimates 
are integrated over a flight phase (unspecified) to yield a total workload prediction, which was 
validated in two ways against the data of 36 pilots flying a high-fidelity simulator in a Line-
oriented flight training (LOFT) evaluation:  
 
(1) The 6 highest and the 6 lowest performing crews were selected via an algorithm combining 
flight crew errors with SME evaluations (of videotapes), and the two groups differed 
significantly on the workload score predicted by the above algorithm.  
 
(2) The overall workload score correlated significantly across crews (r = 0.42) with the SME’s 
estimation of crew workload (again, an assessment based on the videotape).  
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Walden and Rouse (1978) also employed a time-based approach in which they applied formal 
queuing theory. Unlike the approach of the three time-based models above, all of which enabled 
concurrent processing of two tasks to be carried out, queuing theory typically models strict single 
channel (single server) behavior, and the emphasis is on scheduling of which task(s) get 
performed immediately, and which are delayed or deferred. Subjects (non pilots) using a low 
fidelity desk-top simulator flew the “aircraft” (a simple 2 axis control) and monitored gauges for 
failures (excessive fluctuation). Event rates and task priorities were used in the model to drive 
task switching rules, and the model predicted the delay in noticing gauge failures quite well (r = 
0.96). However the simulation fidelity was quite low, the subjects were not pilots, and validation 
data were not provided for flight control error. We also note, as described in the previous section, 
that Sarno and Wickens (1995) provided a pure time-line model prediction of multi-tasking. 
 
Finally, before leaving our discussion of time-based (and particularly queuing) models, we note 
the close analogy between such models, and predictive models of visual scanning, such as SEEV 
(Wickens McCarley et al., 2008; Wickens, Goh et al., 2003; Gore, Hooey, Wickens, Scott-Nash 
et al., 2010; Steelman-Allen, McCarley & Wickens, 2011; See 3.2.2 above). These models are 
time based, in that the eye scans one location at a time; and like queuing models they do not 
allow concurrent processing (the eye is assumed to look at only one place at a time). 
Furthermore, although where one looks does not always correspond to the task one is 
performing, an assumption can be made in highly visual environments like the flight deck, that 
such a correlation between looking at task related information, and performing that task is 
reasonably high (Wickens, Bagnall, Gosakan, & Walters, 2011). The SEEV scanning model 
validation was briefly mentioned in the context of the MIDAS studies in Section 3.2.1 above, the 
majority of such validation efforts are summarized in the models of situation awareness (See 
Section 3.3). 
 

3.2.5 Single Task Demand Models 
Some models have focused on only one dimension of a task, or one type of task, to provide 
predictive precision on the workload demands of that single task (even while acknowledging that 
most of aviation involves multi-task workload). Such models are typically easier to validate. A 
prototypical example is the model of multi-engine aircraft flight handling qualities, presented 
and validated by Rickard and Levison (1981) in the context of the Optimal Control Model 
(OCM), and these have a long history of development and validation in the publications of the 
Annual Conference on Manual Control. Such models will derive the predicted workload of 
controlling the aircraft from engineering analysis of closed loop flight dynamics, based on such 
quantifiable characteristics as control order, control lag, feedback loop properties and system 
response gain (Wickens, 1986). Rickard and Levison note in their validation experiment that 
“…objective performance measures [flight technical error] and Cooper Harper pilot ratings [a 
subjective workload scale tailored specifically to handling qualities] were largely consistent with 
each other and with analytic predictions” (e.g., model output). Although formal correlations 
were not presented, they could be derived from the data, and are evident in the graphs presented. 
A second example of the single task demand model is presented by Parks and Boucek (1989). 
While these authors emphasize time line analysis (see 3,2,4  above), they also describe a 
computational model of cognitive complexity based on information theory that is used to predict 
the workload of flight deck display-control interactions. Validation data are not reported.  
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Two modeling approaches have directly examined models to predict the complexity of FMS 
automation, Gil, Kaber et al. (2012, in press) developed a model based on GOMSL (see 3.2.6 
below). This particular model, described in more detail in the automation deep dive (3.4), was 
validated against both physiological, performance (vertical flight path tracking error) and 
subjective workload measures, in comparing predicted complexity of three FMS designs, against 
the obtained measures of pilots working with these designs. Significant correlations with both 
physiological (heart rate) workload measures and performance (vertical deviations) are reported. 
Predictive correlations were high and significant between some aspects of cognitive complexity 
and physiological measures, as well as lateral deviations. Specific statistics were not provided for 
predictions of subjective workload. 
 
Sebok et al. (2012) also developed a model of FMS complexity (also described in detail in the 
automation deep dive Section 3.4), which was not based on a particular existing architecture, but 
relied upon a total “count” of certain FMS features known to impose added load (e.g., number of 
modes, degree of mode interaction). While this model was not directly validated, it contributed 
to the predicted figure of merit score of the larger FMS model of which it was a part, and this 
figure of merit did receive some form of validation in the manner described in the automation 
deep dive Section 3.4. 
 
Eng et al. (2008) developed a Cognitive Constraint Model (CCM), that operates around a CORE 
(constraint based optimal reasoning engine). While this model is primarily a procedural model, 
and hence was not given a deep dive, it is also indirectly related to single task workload for the 
following reason. The authors model the trade-offs that operators make between minimizing the 
time required by a sequence of cognitive operations, and minimizing the aggregate working 
memory demands of those operations.  For example an optimal sequence might involve 
minimizing the time that large amounts of task related information are placed in working 
memory by “dumping” this information as soon as possible, rather than holding it while other 
steps are accomplished. The authors apply the model to two different FMS interfaces; that of a 
conventional Boeing 777 and the redesigned FDOF (flight deck of the future; see section 3.4.3) 
observing the predicted reduction in working memory demands of the FDOF. However these 
predictions were not validated against pilot performance or workload data. 
 

3.2.6 Knowledge based models: ACT-R and GOMS 
The ACT-R / GOMS approach is primarily focused on multi-tasking rather than workload, and is 
primarily a sequential task selection model, rather than a model of concurrent tasking like 
VACP. As such, models based on these two architectures bear a resemblance to the classic 
queuing theory models (see Walden & Rouse, Section 3.2.4).  However they are considerably 
more complex in choosing not only what tasks will be done at a given period of time, but also 
what processing routines within each of two time-shared tasks will be done when the two tasks 
compete for the same routine that cannot be shared between them (such as a decision, a visual 
scan or a manual action). (Anderson & LeBiere, 1998; Byrne, Kirlik, & Fleetwood, 2008; 
Lebiere & Archer, 2008). This approach was described in the Error model deep dive section 
(3.1).  D-OMAR (Deutch & Pew, 2008) also described in that section includes a task selection 
element for multi-tasking. However its predictions in this regard were not validated. 
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In implementing this approach, Schoppek and Boehm-Davis, (2004) focus heavily on the 
knowledge required for different tasks, whether declarative or procedural, and predict different 
speeds of knowledge retrieval as a function of learning.  GOMS (goals operators, methods, 
selection rules) is a task analytic method that identifies the procedural steps by which tasks are 
carried out. The two modeling architectures are closely related, and are blended in the ACT-R 
version of a pilot-automation interaction model called “ACT-FLY” examined by Schoppek and 
Boehm-Davis (2004). This model, and a similar one developed by Schoelles and Gray (2011) 
called SimPilot also adopt specific multi-tasking assumptions from the model of threaded 
cognition, developed by Salvucci and Taatgen (2008), a model that describes how different 
within-task routines are allocated to different tasks (usually two) at any given moment. 
 
Schoelles and Gray describe how their model is applied to a pre-takeoff taxi sequence, and offer 
neither specific predictions nor validation data. Schoppek and Boehm-Davis provide a more 
elaborate modeling description (using ACT-FLY”) of an automated descent procedure using an 
FMS. The model outputs an altitude profile and certain procedural errors in using the FMS. Its 
output was qualitatively validated by comparing these errors against those of six transport pilots, 
who flew a PS1 desk-top simulator on a descent profile equivalent to the modeled profile.  
Explicit comparisons of model and pilot output however were not presented in the data to enable 
quantitative validation. 
 
Polson and Javaux (2001) present a model, discussed in more detail in the pilot-automation 
interaction deep dive section (3.4), and also heavily related to visual attention models, which 
predicts why pilots do not often scan the flight mode annunciators, a major issue in FMS 
monitoring. They apply a GOMS modeling analysis that, among other features, highlights 
differences in task priorities in multi-tasking, to predict why this task should be of lower priority 
when other sources of redundant, equivalent information are available. No validation data were 
provided. Also, as noted above, Gil, Kaufman et al., (2010, 2012, in press) apply GOMS to 
model FMS complexity.  
 
Finally, although the MIDAS model discussed in (3.2.2) does not contain ACT-R or GOMS 
architecture, it does contain a sophisticated task management strategy (based on Freed, 2000), 
described in Gore et al. (2013, in preparation) that is parallel to those described above. This 
strategy predicts the sequential behavior of scheduling when a workload redline is exceeded. 
Verification of these model outputs has been carried out, but the task selection and task 
management features are not yet results-validated against PITL data.  
 

3.2.7 Integrative Summary:  Workload and Multitasking  
 

Dimensions of Modeled Processes 
Figure 3.2.1  provides an overview of the dimensions of sophistication of workload and multi-
tasking modeling efforts. 
 
At the bottom are represented the two sorts of pilot performance entities that are limited, and 
hence both contribute to workload when they are more demanded, and to a decline in 
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multitasking when they are excessively demanded: these entities are time, and resources other 
than time (e.g., mental effort).  Moving upward from the base in the figure, time-based models, 
or the time component of other models (right branch), increase in their complexity according to 
the sophistication of how time management is modeled (e.g., incorporating task scheduling 
algorithms; Freed, 2000; Gore, 2013, in preparation). Resource (other than time) based models 
increase in complexity (left branch) along two sub-dimensions:  according to how the demands 
of individual tasks for resources are modeled (see 3.2.5 above) and predicted, and according to 
the postulation of multiple resources (Section 3.2.3). In the following, we describe these ordinal 
scales of complexity and sophistication relating to the models reviewed; but also note that any 
given model can capture different levels along any or all of the three axes. Thus a particular 
model may have a simple representation of how time is managed, but a complex representation 
of resources; and while many complex models of sequential time management tend to make 
single channel assumptions of task management (one task at a time, no concurrent performance), 
they need not do so (e.g., Gore, 2013, in preparation; Laudeman & Palmer, 1995). 
  

 
 

Figure 3.2.1: Complexity levels of workload and multi-task models 
 
 
The following represents seven levels of increasing model complexity and sophistication. 
 

• 1. Single channel time. Beginning at the bottom of the figure, models can assume that the only 
resource demanded is time, and that the time demanded by tasks is well less than the time 
available, so that concurrence is never required. Such a situation might apply in the middle of a 
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cruise segment on a highly automated aircraft. We have observed in Section 3.2.3 above that 
such models do not well predict any situation when concurrent tasking is required (e.g., the STL 
model in table 3.2.1). However, moving upward along the right branch, such purely time based 
models can vary greatly in the sophistication and complexity they assume when two tasks do 
compete for the same time slot. The variation ranges from simple queuing theory (Walden & 
Rouse, 1978) or scanning models (Wickens, McCarley et al., 2008) to complex scheduling 
algorithms (Schoppek & Boehm-Davis, 2004; Freed, 2000, Gore, 2013, in prep; Muraoka & 
Tsuda, 2006). 
 

• 2. Concurrence allowed: all or none. Moving upward on the left branch of Figure 3.2.1, models 
assume that tasks can be performed concurrently; but the simplest assumption is that workload is 
simply defined by adding tasks: two concurrent tasks impose twice the workload as a single task. 
Such models like the TLAP model (Parks & Boucek, 1989) make no assumption about how 
demanding the tasks are, nor whether they use same or different resources. 
 

• 3. Quantifying Demand. At this next level of complexity on the left branch of Figure 3.2.1, the 
resource models are further differentiated. Moving up the left limb, models can vary in the 
sophistication with which they characterize the demand level of individual tasks (e.g., simple 
/difficult versus demand level on a 7 point scale). The modeling of flight handling qualities 
(Rickard & Levison, 1981) is an example as is the proposed urgency/importance concept of 
Laudeman and Palmer (1995). So too is the measure of task complexity offered by Parks and 
Boucek (1989) for display complexity, and FMS complexity and by Gil, Kaufmann, et al., 
(2010) and Sebok et al., (2012) for FMS complexity, as well as working memory load, offered in 
the CCM of Eng et al.(2008). These demand levels can be predicted for tasks as a whole, or 
within separate channels, such as VACP, which brings us to the limb on the right side of the left 
branch: resource multiplicity. 
 
4. Multiple Resources. Several of the modeling efforts have postulated multiple channels or 
resources, with the classic VACP channel structure often used by the earlier applications of 
workload models (Manton & Hughes, 1990; Muraoka & Tsuda, 2005; Parks & Boucek, 1989; 
Stone et al., 1987; Sarno & Wickens, 1995). We note here that these models are joined with 
complexity level (3) above, when a task can be associated with a demand level within each of the 
separate resources populating a given model. Over the last few decades, the 4-channel model of 
VACP (e.g., See & Vidulich, 1998, Manton & Hughes, 1990) has realized increasing 
elaboration, to more closely approximate the structure of multiple resources within the brain 
(Wickens, 2008a; see Gore, 2013 in prep; Gore, Hooey, Socash et al., 2011). When a task is 
analyzed into its separate resource components, demands can be assigned either 0 or 1, or can be 
associated with a more graded level of demand, (analogous to the distinction between [2] and [3] 
above). The source of these channel specific demand levels still remains heavily dependent on 
SME estimation (e.g., the classic “McCracken & Aldrich scale”); however computational 
measures of concepts like cognitive complexity (Parks & Boucek, 1989), should allow more 
objective computations of channel-specific demands to be incorporated in models. Some models 
of air traffic control have adopted this approach regarding air space complexity (Boag et al., 
2006), as have some models of pilot-automation interaction regarding the complexity of the 
flight management system (Sebok, Wickens et al., 2012; Gil, Kaufmann et al., 2010). 
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• 5. Providing only the vector of demands. At a lower level of complexity, the vector of demand 
values across channels can simply be offered as a workload estimate; and assumptions made that 
if values within any channel exceed a particular number, this defines “overload” (e.g., 
summation of demands over tasks within a channel greater than 10; Manton & Hughes, 1990).  
 

• 6. Combining demand values across channels: simple addition. In contrast to level [5], some 
models explicitly define workload to be the sum or average across channels (e.g., See & 
Vidulich, 1998; Gore, Hooey, Socash et al., 2011). If one thinks of workload as being 
proportional to the total engagement of the pilot’s brain, this is a very plausible assumption, but 
it does not capture the competition between resources inherent in predicting multi-task 
interference. 
 

• 7. Combining channel values, channel weighting. Still greater modeling sophistication 
assumes that not all channel (resource) pairs, populated by a task, will contribute equally to the 
penalties of multi-task performance (Sarno & Wickens, 1995; Miller, 1998; Gore et al., 2013, in 
prep.) In particular, two tasks that rely on more similar resources (e.g., two visual tasks, or two 
verbal language-based tasks) should be penalized more than two that use more separate resources 
(e.g., a visual and an auditory task). Such weighting can be derived from the dimensional 
structure of multiple resources within the brain (Wickens, 2008b), whereby two tasks sharing 
more dimensions, will be weighted more heavily in assessing multi-tasking penalties. There is a 
diversity of techniques used for producing such differential weighting (Riley et al., 1991). 
 
At this point it is important to reiterate the distinction between models of workload and models 
of multi-tasking (performance decrements). Although the term “workload” is often applied to 
both, they are distinct, both theoretically and practically. The distinction is provided by 
considering the different model levels in 5, 6 and 7 above. In level [6], demands within channels 
are added. Hence a pilot may be heavily loaded, with much of her capacity saturated. But 
because there is no overload in any given channel, and the channels use (somewhat) separate 
resources; there will be minimal performance decrement.  Think of the pilot who is competently 
engaged in hand flying the aircraft, while carrying on a dialogue with ATC.  In contrast, at level 
[5], only one channel (e.g., visual) may be loaded, as when the pilot must monitor both outside 
and in. Overall workload may be low (the pilot does not “feel very busy”), but the potential for a 
dual task decrement is high if, for example, critical visual events occur both inside the cockpit 
and outside, at the same time. A similar circumstance could arise at level [7]; for example 
suppose a task analysis reveals a situation in which the pilot must talk and listen simultaneously. 
Both use verbal resources, and the overload could occur in the verbal resources (potential 
performance breakdown). 
 
Recall too that the data themselves shown in table 3.2.1 reveal that the models that best predict 
workload (e.g., via total demand) are not those that best predict multiple task decrements (e.g., 
via multiple resource conflict matrix). But it will be noted that the two measures are usually 
positively correlated, and to some extent affected by the same variables (e.g., number of tasks to 
be performed concurrently), and hence it is appropriate to consider them both within this single 
deep-dive section. 
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Above then, we have arrayed models along an ordinal scale of increasing level of complexity and 
sophistication. Not surprisingly, more complex models have more complex software, and require 
greater specialized knowledge to “run”.  As a partial consequence of this, more complex models 
tend to be less likely to be fully validated. Facilities that have the expertise and competence of 
complex software modeling are often less likely to have access to full fidelity flight simulators 
and pilots. We summarize the state of validation in the following section. 

3.2.8 Statistics of Validation of Multi-Task and Workload Models  
Thirty-three separate “modeling efforts” of cockpit multi-tasking or workload were identified. 
These correspond closely to the rows of the spreadsheet.  But they involve separate counts if 
more than one model was addressed within a given paper (e.g., Sarno & Wickens, 1995). Of 
these, 19 contained models predicting multi-tasking and 15 contained models of workload. 
Hence, several of the papers modeled (predicted) both commodities. Of the 34 efforts, 11 contain 
true quantitative validation (typically a correlation between predicted and obtained measure), and 
three contained a more qualitative evaluation, providing empirical data, and calling attention to 
the degree of similarity between the predicted and obtained measures. Of the 11 quantitative 
validations, only two could be said to apply to true NextGen procedures and design (Gore, 
Hooey, Socash et al., 2011; Gil, Kaber et al., 2009). 
 
When the models in this deep dive are examined from another perspective, ignoring (or 
independent of) their degree of validation, four of the modeling efforts could be said to apply 
directly to the NextGen scenario (cockpit and/or procedures), while another seven apply more 
broadly, in predicting FMS-induced workload issues; (this is assuming that the FMS, or similar 
flight path automation tools will be heavily involved in NextGen operations. In this regard, the 
reader should also consult the Automation deep dive for FMS models that do not directly predict 
workload). Finally, we also note that of the 29, seven address either helicopter piloting, or 
military combat aircraft missions, where models may generalized to the NextGen commercial 
cockpit, but specifics of the application do not. 
 
In closing, we remind that the summary statistics above do not include the models of visual 
attention, such as SEEV, which could be considered to predict sequential multitasking in 
environments such that where the pilot looks corresponds to the tasks that the pilot performs. 
These models have a slightly better record of validation within the aircraft cockpit, but are not 
summarized in depth in this report (see 3.2.1). 
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3.3 Situation Awareness Models 

3.3.1 Introduction 
Situation awareness in the cockpit for NextGen collectively represents the pilot’s understanding 
of the dynamic current and future state of the aircraft, including the state of automation systems, 
the state of engine systems, the progress of 4D navigation along a planned route, and the state of 
its trajectory relative to hazards; weather, traffic and terrain. This may also include the awareness 
or understanding of the knowledge and workload of other human agents as well: what is ATC’s 
assumption about “who is in charge?” what is the pilot’s understanding of the co-pilot’s current 
role and responsibility? And what is the pilot’s understanding about the navigational intentions 
of close proximity traffic? 
 
While situation awareness concepts and measurements of many of these dynamic aviation 
constructs have been relatively well studied; and some predictive models of SA have been 
developed in other non-aviation contexts (e.g., Banbury & Tremblay, 2004), the intersection of 
predictive models of SA and the flight deck context is sparsely populated, and the population is 
diminished still further in the context of NextGen operations. 
 
The most commonly accepted definition of SA comes from Endsley (1995) and is expressed in 
three levels representing a progression of information understanding and need.  Level 1 SA is 
perception of elements within the environment.  Level 2 SA is the comprehension of their 
meaning.  Level 3 SA is the projection of their status in the near future.  In the context of 
NextGen cockpit traffic scenarios, the three SA level might be expressed as: 
 

• Detection – Aware that there is traffic 
• Integration – Aware of the relative location and trajectory of traffic 
• Anticipation – Aware of the future location and trajectory of traffic 

 
From the standpoint of the Error modeling deep dive (3.1) the three levels express:  
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• Level 1 SA: Failure to correctly perceive information (e.g., data are not available, data 
are difficult to discriminate or detect) 

• Level 2 SA: Failure to correctly integrate or comprehend information (e.g., poor mental 
model, over-reliance on default values) 

• Level 3 SA: Failure to project future action or state of the system (e.g. over-projection of 
current trends, failure to consider all data) 

 
In this section, we describe five clusters of SA models.  The clusters are based on commonalities 
or trends across the modeling efforts.  Most papers are included in only one cluster but a few 
papers include aspects discussed in more than one of the topic areas. 
 

3.3.2 ACT-R / Cognitive Modeling of SA 
ACT-R (Atomic Components of Thought – Rational) is a cognitive modeling architecture that 
has been used to represent a range of aspects associated with human performance in NextGen.  
ACT-R represents performance at the level of cognitive activity every few hundred milliseconds.  
It includes asynchronous modules that represent perception, attention, long-term memory, goal 
states and condition-action rules (i.e., if condition – then action).  Due to this level of cognitive 
decomposition, ACT-R is often combined with a higher-level task modeling environment.  The 
high-level tool is commonly used to represent process steps in a cockpit environment that are 
informed by the cognitive model.  The use of ACT-R represents an attempt to model pilot SA 
from the bottom-up based on the cognitive functions of the brain.   
 
The paper by Boehm-Davis et al. (2002) describes a use of ACT-R combined with an NGOMSL 
(Natural Language GOMS) task-based pilot model executing a descent sequence on a desktop 
flight simulator.  This combination of tools was discussed through several papers in the Error 
deep dive section (3.1) of this report.  This paper does not describe the specific characteristics of 
SA represented by the ACT-R model.  Rather, two observations made during model runs are 
suggestive of SA related errors.  The first is the lack of awareness of uncommanded mode 
changes in the flight management system.  The second is an occasional inability to recall the 
previous goal state following an interruption.  The lack of awareness of a mode change is a 
perceptual failure (SA Level 1) and the inability to recall the goal state represents a general SA 
failure.  No specific performance measures were provided for a validation.  However, 
interventions added to the simulated cockpit interface designed to address the two SA-related 
observations seemed to result in fewer errors when commercial pilots flew the same descent 
sequence with the simulator.  This would imply some level of verification that the predictions 
made by the model at least represent possible problems for pilots. 
 
The model presented in the paper by Keller et al. (2004) combined Improved Performance 
Research Integration Tool (IMPRINT) and ACT-R to represent the pilot’s understanding of the 
aircraft’s position relative to adverse weather (SA Level 2).  The IMPRINT model executed 
time-based flight actions associated with using a cockpit weather information system.  Audio and 
visual inputs were encoded as chunks of spatial weather information including bearing, distance, 
landmarks and relative position.  These chunks were ‘sent’ to the ACT-R model from the tasks in 
the IMPRINT model that represented the pilot’s access to that information.  As such, Level 1 SA 
was assumed to have occurred but was not specifically modeled.  The ACT-R model represented 
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the effects of memory decay, cue priming and rehearsal on the activation levels of these weather 
knowledge chunks over time. The pilot’s weather SA was then based on the activation levels of 
chunks of weather information at any given time during the simulation.  As part of a separate 
effort, SA data had been collected from pilots using the cockpit weather system that might have 
been used to compare with model outputs including latency response, recall probability and the 
magnitude and distribution of positional errors.  However, due to various issues the data were not 
available during the study and no validation of the model results was possible. 
 

3.3.3 Bayesian Networks / Petri Nets / Linear Regression 
Five papers within this category present three different computational models of SA.  The 
models are built to represent a particular set of data through various weighting schemes and 
structures.  In each case, the models integrate information elements from different sources into 
higher levels of SA.  The weightings from Bayesian and Petri networks are modeler-assigned 
usually based on expert knowledge.  The concept element relationships from the linear 
regression model are derived from experimental data. 
 
Two papers (McNally 2005, Zacharias et al., 1996) present the Situation Awareness Model for 
Pilot In-the-Loop Evaluation (SAMPLE) as a computation model that uses Bayesian Networks to 
model components of SA.  In McNally (2005), SAMPLE is used in conjunction with an aircraft 
dynamics model (EAAGLES).  Sensor data from the aircraft model is used by SAMPLE to 
assess the current situation and make decisions about pilot actions that are then supplied back to 
the aircraft model.  As such, the system is described as an SA-based decision model.  SAMPLE 
uses an information-processing step to transform sensor data into semantic variables representing 
events from the simulation (SA Level 1).  A situation assessment step then integrates and 
interprets these variables, using Bayesian networks, resulting in an assessment of the situation 
(SA Level 2).  The events are represented as the lowest level nodes of the networks.  Activation 
of these nodes propagates up through progressively higher associated situation nodes that 
combine to represent the situation.  The event/situation node associations and probabilistic 
relationships within the network are developed based on expert knowledge of the represented 
scenarios.  Rule-based decision-making is used to then form actions based on the situation (SA 
Level 3).  SAMPLE has primarily been used with military air-to-air combat scenarios.  While 
outputs from the system include a number of SA and performance metrics that should be suitable 
for comparison with HITL trials, no validation studies were found. 
 
Two papers (Stroeve et al., 2009; 2011) presented the use of the TOPAZ model and its use in 
assessing risks of runway incursions.  These papers were presented in the Error deep dive section 
(3.1).  The modeling of SA is very general and represented as periodic visual inspections of the 
runway area by the pilots of two aircraft and one air traffic controller on a stochastic time 
interval.  From the pilot standpoint, these inspections represent a portion of the scan path that 
includes the area outside the aircraft.  If the visual scan coincided with the presence of an aircraft 
in a position to interfere, it was assumed that the pilot or air traffic controller would gain that SA. 
TOPAZ functions as a multi-agent dynamic risk model based on a hierarchically structured Petri 
net formalism.  Across the Monte Carlo runs of the model, the frequency of these inspections 
affects the overall probability that the incursion is noticed in time to prevent a collision.  As 
mentioned in the Error section, the reports include only verification rather than validation.  Part 
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of the difficulty is the lack of available data for such a low-frequency event as runway 
incursions. 
 
A paper by Svensson and Wilson (2002), presents a SA model based on linear regression of data 
collected during actual flights of military fighter intercept scenarios (i.e., empirically assigned 
weights).  The data were collected from pilots through questionnaires on mission complexity, 
mental workload, mental capacity, SA, and performance.  The analysis revealed statistically 
significant relationships between seven indices representing the pilot responses including 
mission difficulty, information complexity on two different types of cockpit displays, workload, 
cognitive capacity, SA, and performance.  Mission complexity was only described as a range 
from simple training scenarios to applied missions of ‘very high complexity’ and information 
load as displayed on both the tactical situation and target indicator displays.  The result is a 
causal flow model of relationships between these elements showing that mission complexity 
affects workload and that workload, in turn, affects SA and performance.  The authors report a 
strong connection between the information load on the displays and workload and that increases 
in workload and display complexity both decrease SA.  The data from subsequent PITL 
simulated flights was used to generate another causal flow model and the two models show the 
same types of relationships between elements.  The report presents this as validation but does not 
provide any numerical comparison of the relative weightings between the model elements. The 
use of simulated fighter intercept scenarios, which, while not directly applicable to NextGen, at 
least included data gathered for pilots in both actual and simulated flight environments.  In 
addition, the mission complexity factors in the scenario were, at least partially, expressed in the 
information load of cockpit displays. 
 

3.3.4 SA Results from Workload Model 
The paper by See and Vidulich (1998), describes a Micro Saint model designed to predict pilot 
workload rather than SA (See 3.2.2).  However, the paper includes correlations with pilot-in-the-
loop studies of workload and SA and workload predictions from the model.  Since the model is 
primarily focused on workload, it is covered in detail in that section of this report.  The workload 
model covers the tasks associated with aviation combat missions.  Twelve subjects (non-pilots) 
flew the same missions in a flight simulator and both SART (an SA scale) and SWAT (a 
workload scale) rating were collected.  The two main model predictions of overall and peak 
workload were significantly correlated with the SART SA ratings.  Higher SA ratings from 
SART were associated with model predictions of lower workload.  Also, the strongest 
correlations with the three dimensions of the SART scale were with the Understanding 
dimension, which is the most representative of SA.  This result is illustrative of the strong 
connection between workload and SA (Wickens, 2002b, 2008b).  While the model presented in 
this paper is not a model of SA, it is a computational model predicting results that are strongly 
correlated with SA within a military cockpit environment. 
 

3.3.5 Actual Situation versus Pilot SA 
Several papers describe efforts at modeling SA by explicitly representing an actual situation and 
the pilot’s understood situation.  This SA modeling concept is generally based on the definition 
that SA is the gap or difference between the real world state and our understanding of that state.   
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The paper by Donnelly et al. (1997) proposes the Integrated Decision Model (IDM) representing 
SA, decision-making, and errors based on the Recognition-Primed Decision (RPD) model (Klein 
et al., 1993).  The proposed model uses the comparison of the actual situation and the pilot’s 
mental representation to represent the decision sequence.  Three different decision paths used by 
pilots are included; (1) determining that more information is needed, (2) forming an intention to 
act with assessment of potential consequences and, (3) when the task is routine or under time 
pressure, reacting automatically without assessment of choices.  Level 1 and 2 SA are 
represented by the information and interpretation of the actual situation.  Level 3 is represented 
by the action intentions.  The paper provides only a proposal for the model without any 
information about actual pilot scenario simulations or validation efforts and does not appear to 
contain a computational element. 
 
The paper by Karikawa et al. (2006) presents a model, Pilot Cognitive Simulation (PCS) that 
models full pilot cognitive capabilities for pilot flying (PF) and pilot not flying (PNF).  The Error 
components of PCS were discussed in the Error deep dive section of this report (3.1).  The model 
is based on a process sequence between the interface and the cognitive functions of the pilots.  
Pilots respond to required actions based on attention channels defined by VACP and limited by 
tasks already being executed.  Pilot actions are based on agent groups that represent stored 
knowledge elements, procedural knowledge, information acquisition through monitoring, 
communications, visual and auditory perception and operational control.  PF and PNF share 
responsibility for some tasks and SA is acquired from each task executed by either PF or PNF.  
This represents a concept of shared SA as neither pilot has the whole picture. The SA component 
is based on an internal situation model (ISM) of each pilot and an actual situation model (ASM).  
SA is represented within the ISM based on inputs from the ASM as information acquired from 
the cockpit environment (Level 1 & 2) and predictions and actions performed by the pilot (Level 
3).  Erroneous actions are presented as discrepancies between the SA of the ISM and the ASM.  
The PCS model was exercised using descent scenarios in which the aircraft was cleared to a new 
altitude that may or may not be appropriate given nearby terrain.  As discussed in the Error 
section (3.1), it was unclear how model predictions for errors were compared with actual data.  
While no specific description of validation of the SA components was described, it was reported 
that PCS was able to detect a plausible problem with a simulated enhanced cockpit display, thus 
reflecting a sort of verification process. 
 
Two papers, Shively et al. (1997) and Burdick and Shively (2000) describe the original SA 
modeling components of MIDAS (in MIDAS v2).  More recently, aspects of the A/SA model 
described in the following section has been added to augment the SA modules of MIDAS v5 
(Hooey et al., 2010; discussed in Section 3.3.6 below) but the structure of the SA components 
and how they interact with the other HPM components within MIDAS has not changed.  In 
MIDAS Situational Elements (SE) are the components of the environment that define the 
situation.  Each SE is assigned to context-sensitive nodes that are collections of semantically 
related SEs.  In Shively et al. (1997) the modeled scenario involved an attack helicopter.  SEs 
such as radar, altimeter and airspeed were grouped into an ‘own-ship’ node.  Acquisition of SE 
components is governed by perception and attention modules but can also be a function of 
experience or previous knowledge.  An SA management function uses the information about 
each SE to function as a behavioral regulator.  For any given point in a scenario, the SA manager 
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determines which SEs have been acquired at differing levels and compares that against the total 
number of obtainable SEs.  It also determines if any SEs have been erroneously acquired or 
perceived such that the pilot ‘thinks’ he knows something but is incorrect.  This SA error can be 
considered a representation of overconfidence in SA (Sulistyawati, Wickens & Chui, 2011).  
Actual SA is then calculated as the perceived SA minus the error SA versus the total obtainable 
SA at the time. Each SE and each context node are weighted to express its relative importance to 
the overall situation.  The SA manager uses these weightings to determine the level of SA 
achieved and to derive subsequent decision-action behaviors within MIDAS.   
 
In Burdick and Shively (2000), two different validation efforts for the computational model of 
SA (CSA) within MIDAS are presented.  (1) The first study compared MIDAS CSA predictions 
versus ten GA pilots executing six pairs of trials in a low fidelity simulator.  Each trial pair 
differed only in the availability of various SEs making up three higher order nodes for 
navigation, system management and flight control for a ‘high’ SA condition and a ‘low’ SA 
condition.  SAGAT and SART were used to compare the pilot trials with model predictions.  The 
paper presented only summary results showing basic predictive adherence between model and 
experiment across various SA measures.  Two, in task map related questions and unprompted 
waypoints were significant (p<.05).  The results showed that CSA could predict both the 
subjective as well as performance measures of SA but only to a low-resolution level of ‘low’ or 
‘high’ SA.  (2) The goal of the second validation study was to extend the validation to three 
levels of predicted SA (low, medium, and high).  Six GA pilots flew medical evacuation 
transport scenarios in a rotorcraft part-task simulator.  The scenarios included navigation to 
patient and hospital locations and SA was manipulated by varying the level of route and 
destination information provided by the flight management systems.  Both SAGAT and SART 
results matched the trend direction for model predictions across three levels of SA, but this was 
only a qualitative validation.  The authors point out that all of these validation results were 
preliminary. 
 

3.3.6 SA and Visual Scanning 
The Attention-Situation Awareness (A/SA) model, developed by Wickens, McCarley et al., 
(2008) is an extension of the work at NASA-Ames carried out by Shively and his collaborators 
described in the previous section. Functionally, it is a model of level 2 understanding of the 
status of dynamic systems, both those related to aircraft stability (aviating) and to 4D navigation 
(toward desired waypoints, and away from traffic, terrain and weather hazards). 
 
A/SA contains two major components, a visual scan component, and a memory for state 
component. The scan component is the SEEV model of visual attention (Wickens, Goh et al., 
2003; Wickens, McCarley et al., 2008), described briefly in the workload deep dive (3.2.2). This 
predicts the scan path around the dynamic instruments and outside world that are relevant to 
updating SA regarding the status of those “situational domains”. In the SEEV model these are 
referred to as Areas of Interest (AOI). As they pertain to situation awareness, they are referred to 
as “situational elements” (SE) (Hooey, Gore, Wickens, Scott Nash et al., 2011). A glance to a SE 
(for example a traffic display) will update traffic (situation) awareness to various levels, 
depending on how long the eye dwells there, with long dwells typically leading to maximum SA. 
(However poor or ambiguous displays may lower this value from maximum, imposing what the 
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model describes as data limits.)  SEEV has been validated against the scan pattern of users in 
various environments including the pilot’s scan of instruments in the cockpit (Wickens et al., 
2003; Wickens, McCarley et al., 2008; and particularly the automated cockpit (Steelman-Allen, 
McCarley & Wickens 2011, validation 1; Gore, Hooey, Socash et al., 2011). Thus the validation 
of scan path predictions may be considered as a partial validation of level 1 SA; given that 
fixation is necessary (although not sufficient) for noticing.   
 
The memory component then initiates a decay of the quality of situation awareness the instant 
the eye leaves the SE in question, a decay following the properties of long-term working memory 
(Ericssen & Kintsch, 1995; Durso, Rawson & Girotto, 2007), diminishing to near zero after 
about a minute; but reset to maximum (minus possible data limit) upon return of the scan to 
either that SE, or another SE that supports the same situation. For example, scans to both the 
cockpit window in VMC and to the altimeter, can support altitude awareness on a visual 
approach. 
 
The A/SA model has been applied to three flight deck situations. In Sebok et al. (2006) it was 
applied to predict the pilot’s awareness of wake vortices on a parallel landing approach, using 
different display formats. No validation was carried out, but the model outputs were verified by 
professional pilots. In Wickens, McCarley et al. (2008) the model was used to predict 
navigational awareness on the runway surface. This was part of the error modeling project at 
NASA Ames (Hooey & Foyle, 2008) and was described in some detail in the error deep dive. 
Predictions were made that the loss of awareness of the location on the runway surface at 
Chicago O’Hare airport, would lead to incorrect turns, and indeed these predictions were born 
out by a qualitative validation, in which predictions were compared with actual taxiway errors 
produced by professional pilots taxiing in a high fidelity simulation. Both the model and the 
obtained error data revealed fewer errors with advanced surface navigation displays. 
 
While both of the above model simulations were of a stand-alone version of A/SA, a third 
simulation (Hooey et al., 2010) was carried out when A/SA was embedded in the MIDAS v5, 
described in more detail in Section 4 (Gore et al., 2013, in preparation). The simulation involved 
a two pilot crew on an approach with either of two cockpits, a conventional cockpit, and a 
NextGen cockpit in which the captain was equipped with a HITS displayed on a HUD, while the 
first officer was equipped with an advanced navigational display. The verification of A/SA 
revealed that the model was sensitive to differences in display configuration and pilot 
responsibilities. Validation of SEEV-predicted scan paths was accomplished by comparing data 
with three other scan studies (see 3.2.2). Validation of the full SA model predictions has not been 
carried out. 
 

3.3.7 Summary and Conclusions  
Levels of SA represented in the models 
SA models seem to come in two forms.  Some treat SA as a single representation of awareness at 
a specific time either as a general estimate of overall pilot awareness or associated with specific 
settings or measures (e.g. current mode settings, relative aircraft position).  Other models have 
addressed one or more of the SA levels from Endsley’s definition often providing a combination 
of visual perception model (Level 1) and attention (understanding) model (Level 2) as 
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representations of information acquisition.  Throughout the deep dive reviews of the SA 
modeling efforts, we have made an attempt to categorize the models by these two different 
definitions of SA.  In many cases, the authors specifically used these definitions and provided 
their own categorization.  However, in many cases we were forced to apply an interpretation 
based on the modeling details presented.  In the case of the three categories associated with the 
Endsley definition, it was usually clear enough even if the ‘Levels’ were not specifically stated.  
For example, any SA model that included a ‘perceptual’ component was generally categorized as 
representing Level 1 SA. 
 
General SA 
As indicated, many of the model efforts didn’t attempt to go beyond treating SA as a single 
entity of general pilot awareness.  A number of characteristics are associated with models 
included in this category.  The predicted value of general SA is sometimes represented as a 
relative value (e.g. low, medium, high) that can change over time depending on the scenario 
represented.  In some cases, the modeling environments included only a small component of SA 
as part of a larger cockpit modeling environment.  One model didn’t attempt to model SA 
specifically but used a proxy aspect such as workload to predict SA.  To the extent that the SA 
predictions from these general models have been validated, they should be useful as measures of 
the direction of change of SA for new system designs.  At a high level, it will be very useful to 
know if NextGen design concepts are resulting in a positive (or negative) change in SA even 
when a more detailed assessment of specific SA components is not supported. 
 
Level 1 SA – Perception 
The perceptual component of SA is the component most often represented within the cockpit 
models.  Level 1 tends to be represented in two different ways.  One common method is as a 
general ‘perception’ process by which information elements are acquired from the environment 
and included within the SA components of the model.  The other method is to use a specific 
model that emulates the actions of perception, usually visual.  In the cockpit, this included 
various levels of replicating the pilot’s scan pattern across instruments and out the window and 
the prediction of noticing (perceiving) visual events (Wickens, McCarley et al., 2008; Wickens, 
Hooey et al., 2009). This has the advantage that perception can be objectively measured for 
validation by scan path analysis.  In both cases, when a distinction is made, the information 
elements are generally those that can be acquired visually.  However, several models extend 
perception to include auditory and knowledge-based elements.  In nearly every model, the 
representation of Level 1 SA is then tied to some level of situation comprehension such that 
Level 2 SA is also included. 
 
Level 2 SA – Comprehension 
Nearly every model that included a concept for Level 1 SA tied that closely with a representation 
of Level 2 SA.  The representation of Level 2 generally occurred in two ways.  The first is the 
use of proxies such as visual fixation or dwell times on a particular cockpit instrument to infer 
the understanding of the attended information element.  While not a perfect indicator of 
understanding, this has the advantage of using simple time components within the modeling 
environment.  This assumption is also commonly used within eye-tracking studies.  Some 
models stop there and state that the level of understanding for the attended element is static while 
other models have gone one step further and modeled a time-based change in the quality of the 
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understanding of an information element (Hooey et al., 2010).  During the initial acquisition of 
any given element the SA level is assumed to be high; and higher with longer fixations.  The 
quality of that information item or ability to mentally access it then degraded over time using 
various decay algorithms.  Many models also then represent an increase in the SA for an 
information item when next it is attended to within the scenario sequence.   
 
Level 3 SA – Projection 
Level 3 SA is the stage that is the least well represented by current models. Those that make an 
attempt usually focus on generating decisions from rule-based algorithms for a specific situation 
having used predictions of Level 1 and Level 2 SA to generate the ‘situation’.  The jump from 
situational understanding to decision represents a somewhat valid decision-making step similar 
to Klein’s (1989) concept of recognition-primed decision-making.  However, from a modeling 
standpoint, resulting decisions or actions are simply another use of a proxy that does not 
represent the mental process of combining an understanding of the situation with experiential 
knowledge to create a projection of a future state.  A study by Sulistyawati et al. (2011) used 
SAGAT to assess all three levels of SA of fighter pilots for an air combat simulation.  In addition 
to the SA levels, the pilot’s confidence in their SA was also collected.  The results show that 
pilots had the lowest accuracy and highest overconfidence associated with predictions (Level 3 
SA); but a model predicting this result was not presented.  This result emphasizes the need to 
focus on supporting the pilots with systems designed to enhance their ability to project future 
states and support system designers with models that can effectively represent and predict Level 
3 SA. 
 
Modeling Distributed SA 
The commercial cockpit is fundamentally a two-person shared-task environment in which the 
crew needs to manage their physical and mental resources.  As such, the overall understanding of 
any situation is a function of the combined SA of the two pilots.  The majority of computational 
SA cockpit models reviewed here are focused on predicting the SA of a single pilot.  Only two of 
the models have included the concept of differing or distributed SA across the pilot flying (PF) 
and pilot monitoring (PM; Karikawa et al., 2006, Hooey et al., 2010).  Both models represented 
the concept that the two pilots share many of the tasks and while most of the task assignments 
are predetermined, it is sometimes the case that one pilot will ‘back-up’ the other if the workload 
requires.  In the models, various actions or tasks occur over time and get assigned to the 
currently available pilot.  The resulting SA components associated with those tasks are then 
acquired by the pilot who performed the task.  In this way, the available SA is split between the 
crew and the model can express any resulting issues when subsequent tasks executed by one 
pilot require the SA currently held by the other.  One of the models (Hooey et al., 2010) used a 
specifically NextGen-like topic when the PF was modeled using an updated set of flight 
instruments (HUD) while the PM was modeled using current day systems.  The model, discussed 
also in the roles & responsibility deep dive (Section 3.5) was able to express not only the 
components of distributed SA but also the difference in the quality of the SA across the different 
cockpit systems. 
 
NextGen Concepts within Modeled Scenarios 
The SA models described here cover flight topics across a range of both military, GA and 
commercial aviation scenarios.  The papers were specifically limited to those that presented a 
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computational model of the pilot in the cockpit.  However, not all of them relate specifically (or 
even generally) to NextGen concepts.  The SA needs of the fighter pilot in tactical situation 
represent considerable interest to military system designers. Military-focused SA models include 
intercept, air-to-air, and air-to-ground scenarios.  This need, along with the associated available 
funding for military research and development, are likely the reasons why so many of the models 
of SA are either focused on or exercised using fighter-based scenarios.  While the SA 
methodologies presented in these efforts may be valid and useful, the models have not 
necessarily been applied to NextGen concepts.  
 
While the military-backed SA models are common, models focused on commercial aviation and 
NextGen-like concepts are not lacking.  Two models focused on scenarios related to issues of 
navigation during flight. One was focused on cockpit systems supporting waypoint navigation 
and the other was focused on awareness of aircraft location relative to adverse weather.  Two 
modeled SA issues for runway incursions and taxiway turn errors.  The most commonly modeled 
scenarios focused on the approach phase of flight including the descent sequence. Within this 
context, two models also focused on the very specific NextGen concepts of advanced cockpit 
systems that included wake vortex information and a synthetic vision system presenting a 
highway-in-the-sky.  This concentration of approach phase and runway issues represents the 
understanding of the high workload environment and high consequences associated with the 
concentration and reduced spacing of aircraft at or approaching an airport. 

3.3.8 Statistics of Validation of SA Models 
Fifteen separate modeling efforts of cockpit SA were identified. These are shown in Table 3.3.1.  
Of these 15, only one contained a quantitative validation that included a correlation between a 
predicted and an obtained measure.  Two included more qualitative validations in which they 
pointed out similarities in trends or values between predictions and obtained measures.  Of these 
three efforts, only one can be said to apply to NextGen concepts.  Six of the modeling efforts that 
did not include any validation did report some level of verification.  These ‘verifications’ took 
the form of checks by SMEs on the ability of the model to replicate or output results that 
‘appear’ correct or that match a simulated environment in some way.  All six of these efforts 
apply to either general or specific NextGen concepts.  Independent of verification or validation, 
eight of the SA modeling efforts included some application to NextGen concepts while the other 
three are focused on military applications. 
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Table 3.3.1 Validation status of SA models. 
Model Verification / 

Validation 
Scenario (s) SA Prediction 

ACT-R / NGOMSL Verification Descent Sequence Level 1 & General SA 
ACT-R / IMPRINT None Weather System Level 2 
SAMPLE None Fighter Air-to-Air Level 1, 2, 3 
TOPAZ Verification Runway Incursion General SA 
Linear Regression 
Model 

Validation Fighter Intercept General SA 

Micro Saint Validation Fighter Mission General SA 
IDM / RPD None None Level 1, 2, 3 
PCS Verification Descent Errors, PF/PNF Level 1, 2, 3 
CSA MIDAS Validation Waypoint Navigation Level 1, 2, 3 
A/SA / SEEV / 
MIDAS 

Verification Taxiway turn errors, 
Approach, SVS, Wake 
Vortex, PF/PNF 

Level 1, 2 

SEEV only Validation Approach, SVS, automated 
cockpit 

Level 1 
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3.4 Pilot-Automation Interaction Models  

3.4.1 Introduction 
In NextGen operations, new technologies and capabilities are required to provide a significantly 
increased volume of operations.  One of the key features envisioned to enable integration of 
these capabilities into the aviation system is a greater reliance on automation.  As pilots’ tasks 
expand to include maintaining separation from surrounding aircraft, negotiating trajectories with 
air traffic control (ATC), and monitoring weather and wake vortex conditions, automation is 
expected to provide pilots with the support needed to perform these tasks. 
 
The information-rich flight decks of the future will require theoretically based design and 
evaluation methods to ensure that automation is successfully integrated on the flight deck.  
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Current-day systems show vulnerabilities to the effects of design errors in automation and pilot-
automation interaction.  This trend is only expected to increase during the transition to NextGen 
operations.  Because the FMS has been the host of much cockpit automation over the past 
several decades, it will continue to evolve in its role of hosting many new flight path procedures 
such as those involved in 4D navigation, and in separation responsibilities. 
 
In analyzing the pilot performance models that address pilot-automation interaction, 24 papers 
were initially reviewed.  To be included as a pilot-automation interaction model, there had to be 
a model of some sort that made specific predictions about pilot performance in automated 
systems.  The model had to provide a way of distinguishing between different types of flight 
deck automation based on predicted pilot performance.  It is possible that other types of models 
(e.g., workload, error, multitasking) would also be appropriate for evaluating automation, but 
only those models that were specifically used to address automation are included here. Using 
these criteria, 16 of the 24 papers were considered relevant for, and included in, the pilot-
automation interaction (PAI) deep dive.  These papers addressed PAI in a variety of contexts.   
 

3.4.2 Defining a Specific Focus for Pilot-Automation Interaction 
Since “human-automation interaction on the flight deck” is a tremendously broad area, the 
modeling efforts evaluated specific aspects of the domain.  Many models focused on a single 
piece of equipment, several focused on a particular phase of flight, and some were focused 
exclusively on a particular task. 
 
Many (11 of 16) of the efforts specifically addressed the flight management system (FMS).  This 
is a complex piece of flight deck automation, so it is not surprising that many modeling efforts 
specifically considered the FMS.  Some of the efforts addressed keystroke-level interaction, 
some evaluated cognitive errors in action sequences, and some predicted failure to notice 
changes.   
 
Several modeling efforts (5 of 16) specifically evaluated pilot performance at the top of descent 
or in the arrival / approach phase.  These are understood to be the highest workload (and 
therefore most safety-critical) phases of flight.  Many of the models or tools could easily be 
applied to different phases of flight. 
 
In addition, some models evaluated very specific task sequences.  John et al. (2009) and Lüdtke 
and Osterloh (2010) investigated highly specific procedures.  The narrow focus on a limited set 
of tasks allowed them to study the factors contributing to cognitive errors in great detail. Models 
by John et al. (2009) evaluated a three-step procedure for entering a landing speed into the 
Control Display Unit (CDU), and by Lüdtke and Osterloh (2010) evaluated a procedure for 
changing the flight plan during arrival/approach.  Both of these studies predicted cognitive errors 
in the relatively focused procedural sequences.    
 

3.4.3 Design Tools 
Some papers described design tools that were developed to compare different automation designs 
in terms of their predicted ability to support pilot performance.  One effort (Gonzales-Calleros, 



 

 
 

56 

Vanderdonckt, Lüdtke, & Osterloh, 2010) evaluated the FMS interface design in terms of its 
adherence to human factors standards such as font type and color contrast between text and 
background.  The paper outlined an approach for including cognitive models of pilot 
performance, and described a number of potential benefits, but the model was not actually 
integrated with the evaluation tool.   
 
Another effort also developed an automation design advisor, called the Automation Design 
Advisor Tool (ADAT; Sebok et al., 2012) to evaluate and compare potential FMS designs.  This 
effort included multiple analytic models to assess design quality based on human factors 
principles (e.g., layout of information – providing critical or frequently used information in a 
readily-accessible region; automation complexity – addressing the number and interaction of 
modes, and the feedback presented to the pilot regarding current and future status).  The analytic 
models, referred to as modules, evaluated the automation design issues of 1) information layout, 
2) noticeability of changes, 3) meaningfulness of terms, 4) confusability of terms and symbols, 
5) complexity of system design, and 6) complexity of procedures necessary to program the FMS, 
based in part on Sherry et al (2002).  ADAT included SEEV and N-SEEV attention models 
(Wickens & McCarley, 2008; see 3.2.4, 3.3.6 and 3.4.4 below), to predict pilot scanning 
behavior and the noticeability of FMS information changes.  FMS designs are evaluated and 
compared in terms of their adherence to human factors design principles (through the analytic 
models) and for their ability to support pilot noticing of mode changes (through the SEEV and 
N-SEEV models).   
 
The ADAT project included several model verification and validation efforts.  When each 
analytic model was developed, aviation SMEs were consulted to provide feedback on the 
appropriateness of predictions for a given set of inputs.  If the SMEs identified discrepancies 
between model predictions and real-world experience, model updates were identified and made.  
Four different reviewers (a professional pilot, an avionics systems designer, a human factors 
professional, and a graduate student in human factors engineering) performed ADAT-based 
assessments of flight deck FMS designs.  The research team compared the results for a “common 
sense” evaluation.  The most advanced FMS design, Boeing’s Flight Deck of the Future (FDOF, 
Mumaw, Boorman, & Prada, 2006), was rated as best design.  ADAT correctly identified known 
deficiencies in FMS design (e.g., complex mode interactions, lack of feedback about mode 
operation).  In addition, the team compared ADAT scores for assessing procedures in the FDOF 
and a conventional style FMS.  As part of this validation effort, the ADAT-generated procedures 
scores (from Module 6) were compared with empirical findings of a study that compared 
procedural learning on a conventional FMS with the FDOF (Mumaw, Boorman, & Prada, 2006).  
The study revealed that procedural learning was better with the FDOF than with the conventional 
FMS.  In fact, the improvement was approximately 33%.  Similarly, the difference in ADAT-
predicted procedure scores was 27% higher for the FDOF than for the conventional FMS (Sebok 
et al., 2012). It was assumed that the difference in procedural learning (observed by Mumaw, 
Boorman, & Prada, 2006) would correspond to differences in predicted procedural complexity 
(predicted by ADAT). 
 
Finally, the CogTool design evaluation software (John et al., 2009) allows a designer to create a 
“use-case storyboard” with a graphical user interface, and predict time to complete task or errors 
made.  In this particular effort, the team focused solely on a three-step procedure of 
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programming a landing speed into the CDU.  They made a series of step-wise adjustments to the 
underlying ACT-R cognitive model, described below, until the predicted error rates closely 
approximated those of actual pilot trainees learning to use the FMS.   
 

3.4.4 Predicting Performance Based on Attention / Noticing and Visual Scanning  
Boehm-Davis et al. (2002) used an ACT-R model to predict pilot noticing of automation mode 
changes.  ACT-R is a cognitive architecture that attempts to model cognition through goal-
directed behavior and a series of “if-then” rules (see page 45 and section 4,2 for more details).  
The model predicted that pilots were more likely to fail to notice mode changes when the 
changes were initiated by the automation, rather than the pilot.  The authors note that similar 
trends were observed in previously gathered empirical data.   
 
In the ADAT effort, Sebok et al. (2012) modeled pilot scanning and noticing using the SEEV 
and N-SEEV models (Wickens & McCarley, 2008).  These models predict that visual attention is 
driven by bottom-up factors of display salience and effort (distance from the current viewpoint 
or need to page among views in a multifunction display) involved in viewing the display, and the 
top-down factors of expectancy (more-frequently changing displays will be viewed more often) 
and value or importance of the display.  Similarly, noticing a change in the visual environment 
occurs due to these factors. Using input parameters regarding an FMS design (e.g., the location 
of a change on the flight deck, the salience of the change, if it is always visible or retrieved by a 
keypress, the workload at the time of the change, the frequency with which the change occurs, 
and the importance of the change), ADAT (Sebok et al., 2012) predicts the probability that pilots 
will notice the change and (if noticed) the average predicted time required to notice the change. 
The SEEV and N-SEEV components of ADAT were not directly validated within the ADAT 
validation effort. However the SEEV and N-SEEV models, both included in ADAT, have been 
empirically validated in previous efforts (Wickens, McCarley, Alexander, Thomas, Ambinder & 
Zheng, 2008; Steelman-Allen, McCarley, & Wickens, 2011).  In each of these efforts, model 
predictions in aviation flight deck contexts, including a high fidelity Boeing 747-400 simulator 
(Sarter, Mumaw, & Wickens, 2007) were found to predict empirical data of scanning and 
noticing behavior with correlations above 0.60.  
 
The CASCaS (Cognitive Architecture for Safety Critical Task Simulation) model has been used 
to predict visual scanning behavior, dwell times in areas of interest (AOIs), and the time required 
to notice specific visual indications in the cruise and approach phases of flight (Lüdtke, Osterloh, 
& Frische, 2012).  CASCaS, like ACT-R, is a cognitive architecture, which provides a structure 
and set of rules for simulating human cognition. This effort evaluated pilot performance while 
interacting with the airborne human machine interface (AHMI; an advanced FMS) in the cruise, 
approach, and the final approach phases of flight.   
 
The CASCaS model predicted pilot scanning behavior across the phases of flight, and the 
authors indicated that the overall correlation between model predictions and empirical data was 
high (r2=0.85).  For specific aspects of model predictions, the average dwell times on the AHMI 
for cruise, approach, and final approach were 3.2s, 3.2s and 1.7s.  Empirical data for those same 
three phases were 5.7s, 4.9s, and 1.8s.  Finally, the average noticing times for visual indications 
in the cruise and approach changes were compared.  The model predicted that average noticing 
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times would be approximately 1 s in each phase.  Empirical data showed that noticing was faster 
in the cruise phase, with average noticing times being 0.8 s compared with 1.2s in the approach 
phase.  While these results indicate that the model does a reasonable job of approximating pilot 
behavior, the validations are for highly specific tasks or visual areas, in the context of a much 
larger set of tasks performed and areas viewed.  
 
In another CASCaS effort (Lüdtke, Osterloh, Mioch, Rister, & Looije, 2009), the CASCaS 
model predicts cognitive errors such as Learned Carelessness and Cognitive Lockup.  Learned 
Carelessness occurs when pilots routinely perform procedures with multiple steps included to 
ensure safety criteria are met.  If these steps typically do not identify any safety concerns, pilots 
learn that they improve efficiency by skipping these steps, and they will generally not be 
working in an unsafe condition.  The problem is that sometimes these unsafe conditions do exist, 
and, by skipping the steps that would allow them to identify the condition, pilots sacrifice safety 
for efficiency.  Another error more directly related to attention is Cognitive Lockup, also known 
as attention capture.  In conditions where an off-nominal event occurs, pilot attention may be 
drawn to the event and away from routine monitoring tasks (e.g., the Everglades accident, where 
pilots focused on a faulty landing gear indication and failed to notice that the autopilot had 
disengaged as the plane descended into terrain). 
 
In two separate efforts, the CASCaS model was implemented, run and compared with empirical 
pilot performance.  The first effort (Lüdtke & Osterloh, 2010) predicted pilot behavior, 
specifically learned carelessness, in a flight re-planning procedure.  The situation of interest was 
that the re-planning required the pilot to perform a set of verifications of the proposed new route.  
These required the pilot to verify, through a series of button presses and display observations, 
that the new route’s lateral and vertical trajectories were acceptable.  During numerous model 
runs, the vertical route was acceptable.  Over time, the pilot would learn that s/he could skip the 
vertical route check and accept the new trajectory without problem.  However, in two conditions 
(run 1 and run 24), a problem did exist that could only be identified by checking the vertical 
view.  The model was run 24 times.  In the first run, a problem existed in the vertical plan, and 
the model predicted that the pilot noticed it.  Over the next 22 runs, the pilot could ignore the 
vertical plan, but on the 24th run, another error occurred and had to be noticed in the vertical 
view.  The model predicted that by run 13, the pilot would begin neglecting the checks and 
would fail to notice the problem in run 24 (i.e., learned carelessness).   
 
The empirical results were similar, in that the subject did notice the first problem, and continued 
checking the vertical view until trial 12.  In contrast to model predictions, the pilot subject 
showed more erratic behavior.  He resumed looking at the vertical route in some later trials.  
Interestingly, the pilot opened the vertical view page in trial 24, but failed to notice the 
discrepancy in the flight plan.   
 
Based on reviewing the verbalizations gathered in the experiment, the researchers decided that, 
in trials 16-17, and 19-21, the participant received an indication that the new plan included a 
potential timing constraint violation.  This cued him to investigate further and see if the route 
included vertical path violations.  The “checking” behavior, once reinitiated, persisted over 
several trials.  This hypothesis, that the pilot was checking for timing constraint concerns rather 
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than vertical flight path issues, was confirmed by the pilot’s failure to notice the vertical path 
violation (despite having accessed the appropriate display).   
 
The authors updated the model to include “contextual factors” (specifically, strengthening or 
inhibiting associations between elements in memory).  The updated model then correctly 
predicted (in 23 of the 24 trials) when the pilot checked or neglected to consult the vertical view.   
 
Another effort identifies a high-level attention model using SOAR (State, Operator And Result; 
Laird, 2008).  Like both ACT-R and CASCaS, Soar is a cognitive architecture.  The Uijtde Haag, 
Duan, Schnell et al (2011) effort briefly outlines an approach for combining modeling and 
simulation tools to predict pilot performance when using hazard and integrity monitoring (HIM) 
and integrated alerting and notification (IAN) systems on the flight deck.  The model can be used 
to compare different potential system designs.  The primary inputs to the modeled pilot are 
through visual and auditory perception, so attention and noticing are the first step to a more 
complex cognitive model.  Unfortunately the reference to this research project was a 
presentation, so the details of the modeling effort were sketchy.  The authors indicated that a 
final report had been delivered to the customer (NASA), but the report had not yet been 
approved for distribution.  No validation data are provided. 
 
Polson and Javaux (2001) present a model, discussed in more detail in the deep dive section on 
workload and multitasking models (3.2.6), and also heavily related to visual attention models, 
that predicts why pilots do not often scan the flight mode annunciators, a major issue in FMS 
monitoring. They apply a GOMS modeling analysis that, among other features, highlights 
differences in task priorities in multi-tasking, to predict why this task should be of lower priority 
when other sources of redundant, equivalent information are available.  The authors describe a 
qualitative evaluation of the similarity between their predictions and the data on FMS monitoring 
by Huttig, Anders, and Tautz (1999). 
 
D-OMAR models were developed to predict pilot scanning behavior in different flight deck 
display configurations (Deutsch & Pew, 2004).  One was a baseline, current-day style flight 
deck, one included a synthetic vision system (SVS) and one included an enhanced SVS (an SVS 
with primary flight display [PFD] information included, and the PFD removed).  The first two 
conditions had been evaluated empirically, and the D-OMAR predictions were compared with 
empirical performance.  The performance measure was "percent dwell time on the out-the-
window (OTW) view, SVS, PFD, and NAV displays."  A qualitative comparison of model 
predictions with empirical data indicated a generally good agreement, but it should be noted that 
there was substantial inter-subject variability.   One key finding was that the presence of the SVS 
altered the pilots' scanning behavior, so they spent less time viewing the NAV and PFD displays 
when an SVS was present.   With the enhanced SVS, the model predicted that pilot scanning 
behavior would include "normal" NAV sampling (where the NAV was viewed as frequently as it 
had been before the SVS was added).  No empirical evaluation was performed to validate this 
particular condition.  The researchers indicated that the results were sensible, given that the SVS 
also included PFD data. 
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3.4.5 Predicting Performance based on Time to Complete Tasks 
CASCaS, described above, was also used to predict time to complete tasks (Lüdtke, Osterloh, & 
Frische, 2012).  The model predicted the time required to handle an uplink from air traffic 
control (ATC) in the cruise and approach phases of flight. The model predicted that the uplink 
would require approximately 1 minute, with slightly longer times in the approach phase than in 
cruise.  An empirical study of the same conditions revealed that pilots were “faster [to uplink] in 
the approach phase than in cruise” (but no numbers were provided regarding the magnitude).  
Discussion with pilot SMEs provided insights into the discrepancy or reversal between model 
predictions and data.   The SMEs indicated that pilots typically have to work faster in the 
approach phase, just to get everything done.  
 
Manton and Hughes (1990) developed a regression equation, based on previously-gathered 
empirical data, to predict the time to complete tasks using a Multi-Function Keyset (MFK) on the 
S-70B-2 Seahawk Helicopter, used by the Royal Australian Navy.  The MFK, much like an 
FMS, includes a special purpose keyboard and an 8-line alphanumeric display, and is used to 
enter data into or view data contained in a tactical database.  The equation predicts time as a 
function of the number of key presses required, operator pauses, and page changes.  Using a 
stepwise regression, the authors found that the equation predicts 79% of the variance in the data 
(p < 0.001).  The authors propose that the model can be used to evaluate different types of 
automation and system configurations.   
 
‘Air’ MIDAS (MIDAS v1; Pisanich & Corker, 1995) was used to predict which type of FMS 
automation pilots would use to perform a descent based on the time available to implement the 
clearance and the modality in which the clearance was delivered (voice or datalink).  Three types 
of automation were considered:  an autoload capability (the most highly automated), a CDU, and 
an MCP (mode control panel, the least automated).  The ‘Air’ MIDAS model included 
information on equipment that was monitored and accessed (e.g., displays and controls) when 
interacting with the three different types of automation, possible interruptions, decision rules, 
and an algorithm for estimating the time required to make a decision (based on strategy and 
number of attributes considered).  The model predicted that the less time available to implement 
a clearance, the more likely pilots were to use a less-automated mode.  Further, the model 
predicted that pilots were more likely to select the less-automated modes if a clearance was given 
by voice than if it was given via datalink.  
 
To validate the model predictions, Pisanich and Corker conducted an experiment using four 2-
pilot crews in a Boeing 747-400 simulator.  They collected data on actual pilot performance 
regarding mode selection.  They compared the ‘Air’ MIDAS model-predicted data and empirical 
data using three techniques:  1) compared all model predictions with all empirical predictions, 2) 
compared one model run against all model runs, and 3) compared all empirical data against a 
single (randomly chosen) model run.  By running t-tests of these comparisons, they found no 
significant difference between the model data and the empirical data.   However t-tests are of 
questionable value in model validation when they are used to assume validity to the extent that 
model predictions and HITL data show “no significant difference” between them. This is 
because confirming the null hypothesis in this way does not take any account of the possible low 
statistical power that may characterize the HITL data. Stated another way, if this power is low, 
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then it is trivial to show that a HITL data point “does not differ” from a model predictions (using 
statistics as a criterion), even if the mean value of the predicted point may be quite different.   
 

3.4.6 Predicting Performance based on Workload 
Some models predicted pilot performance when using automation based on workload (for more 
information, see the workload and multitasking deep dive Section 3.2).  Gil et al., 2009, (also see 
Gil & Kaber, 2012) used E-GOMS to model pilot performance when working with a flight 
control panel (FCP), a CDU or an enhanced CDU.  They predicted workload based on the 
complexity of the procedures, including the number of submethods being performed, the number 
of steps needed to complete the submethods, the chunks of information that pilots need to 
remember, and the number of information transactions that occur.  As complexity increases, so 
does workload.  The authors ran the model for each of the three types of automation and 
collected data on the complexity indices (the complexity indices varied across automation types).  
They then conducted a between-subjects human-in-the-loop experiment (for automation types), 
and gathered four different measures of workload:  heart rate, subjective workload (NASA-TLX 
predictions), vertical flight path deviations, and lateral flight path deviations.  They calculated 
the Spearman correlations for the different complexity indices and empirical performance data, 
as shown in table 3.4.1 below. 
 
Table 3.4.1:  Correlations between model predictions and empirical data for complexity indices 

Pilot performance 
measures: 

Heart 
rate 

NASA-TLX Vertical flight 
path deviations 

Lateral flight path 
deviations 

Model predictions:     
Number of 
submethods 

r = 0.928 
p < 0.05 

(positive, 
but not 
significant) 

r = 0.978 
p = 0.008 

No significant 
correlation 

Number of steps r = 0.829 
p < 0.05 

(positive, 
but not 
significant) 

r = 0.886 
p = 0.019 

No significant 
correlation 

Chunks of information  r = 0.928 
p < 0.05 

(positive, 
but not 
significant) 

r = 0.978 
p = 0.008 

No significant 
correlation 

Number of 
information 
transactions 

r = 0.883 
p < 0.05 

No 
significant 
correlation 

r = 0.971 
p = 0.001 

No significant 
correlation 

 

3.4.7 Predicting Performance based on Automation-Induced Errors 
Two primary modeling architectures are used to predict pilot error:  CASCaS and ACT-R 
(Adaptive Control of Thought – Rational).  These are both cognitive architectures, or 
frameworks that attempt to model human cognition in terms of noticing information, processing 
information in working memory, accessing long-term memory, and making decisions.  
 
CASCaS (Lüdtke, Osterloh, & Frische, 2012; Lüdtke & Osterloh, 2010; Lüdtke, Osterloh, 
Mioch, Rister, & Looije, 2009) has been used to predict pilot error in terms of learned 
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carelessness and cognitive lockup.  Because these factors, while errors, are specifically related to 
attention and noticing behaviors, the CASCaS papers are summarized in Section3.4.4 , above. 
 
CogTool (John et al., 2009) is based on ACT-R code, and can model the time to complete tasks, 
errors made on task steps, and failure to complete task steps.  In their modeling effort, the 
authors identified three tasks associated with entering a landing speed into the CDU.  They ran 
the model to predict errors, and performed a series of iterations to improve model predictions.  
The three tasks were sequential; the first had to be completed before the next could be 
performed.  The CogTool model accesses a latent semantic analysis (LSA) corpus of terms to 
predict if pilots will understand the terminology on the CDU.  During their first model run, they 
identified that no pilots would be able to complete the first step of the procedure because they 
did not understand the terms.  The LSA corpus being accessed was developed to represent a 
college student’s knowledge, not the specialized knowledge that a pilot would possess.  They 
then accessed an aviation-specific corpus of terms, and the success rate jumped to 10 percent for 
the first task only.  A series of other changes were implemented, to account for the specialized 
knowledge that pilots possess, and the model eventually predicted success rates of 92% for the 
entire procedure.  This was considered reasonably accurate, based on one of the author’s 
experience as a pilot who trains new pilots to use the FMS.   
 
In addition, as discussed also in Section 3.2.6, Schoppek and Boehm-Davis (2004) used ACT-R 
to create a model (ACT-Fly) to model pilot awareness, cognition, and errors.  They, like the 
Pisanich and Corker (1995) study, evaluated pilot use of automation at the end of the cruise 
phase of flight until the initial approach fix.  They developed a model to predict when pilots 
would choose a more automated mode (VNAV, in which a preprogrammed flight plan provides 
reference values for the flight) or a less-automated mode (FLCH and V/S, which require the pilot 
to provide reference values).  The authors implemented a relatively simple heuristic for selecting 
the mode:  if the ratio of the horizontal distance to vertical distance to the waypoint is greater 
than 250, they will chose a less-automated mode.  The researchers ran the model 6 times for each 
scenario.  Both scenarios were a descent through 6 waypoints.  In one scenario, there were no 
ATC clearances, but in the other, a clearance was issued shortly after the top of descent for 
waypoint 3.  The model predicted that pilots would chose VNAV for all but the last leg of the 
flight for the “no ATC clearance” condition, and that they would chose FLCH for the 
“clearance” condition.  Further, in 12 runs, the model predicted 4 errors of omission, 1 of which 
the modeled pilot never recovered.  In the other 3 error conditions, the pilots failed to resume a 
deferred action.   
 
Empirical data were gathered from 5 commercial pilots using a desktop simulator with keyboard 
and mouse controls.  The 5 pilots participated in 2 scenarios each.  Scenario 1 should have been 
handled using the V/S or FLCH mode, and scenario 2 should have been handled with the VNAV 
mode.  Only 1 subject in scenario 1 used the V/S mode.  Two subjects incorrectly used the 
VNAV mode exclusively for scenario 1, and the remaining 2 subjects switched frequently among 
different modes (e.g., FLCH, VNAV, and V/S).  This suggests a 20% agreement between model 
predictions and empirical data for scenario 1.  Scenario 2 revealed better (60%) agreement, with 
3 of the subjects using the model-predicted VNAV mode.  The other 2 subjects switched 
frequently among modes.  
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The actual pilots performed surprisingly poorly, and made many more mode changes than the 
model predicted.  Further, they missed crossing restrictions and made poor decisions about 
initiating an early descent.  The researchers attributed the pilots’ poor performance to the fact 
that they work in 2-person crews, yet the experiment was designed for a single pilot.  In addition, 
the controls (keyboard and mouse rather than a control yoke and rudder pedals) were a potential 
interference.    
 
The authors conclude that ACT-Fly had certain strengths and limitations.  It could model errors 
of omission and commission, and it could be used to evaluate pilot performance when working 
with different procedures.  The model did not adequately address mode surprise, and modeled 
pilots, once they made an error, were much poorer than humans are at recovering from it.  
Finally, the model did not address pattern recognition, which is commonly used by pilots in 
interpreting situations and planning responses.  Rather, ACT-R relies only on rules, and therefore 
fails to capture the complexity of human cognition.    
 
Gil et al (2009) indicate that their E-GOMS based model, discussed in Section 3.4.6, can be used 
to predict error.  When the number of chunks to be held in working memory exceeds 5, the 
model predicts an increased likelihood of pilot error, based on limitations of working memory 
(Miller, 1956).  No error predictions were made in the paper, and the empirical validation did not 
include error data. 
 

3.4.8 Trust in Automation 
Another aspect of pilot-automation interaction is trust in automation.  Raeth and Reising (1997) 
developed a model based on Lee and Moray’s (1992) regression equation that attempts to predict 
the degree of trust an operator will have for the automation system being considered.  The Lee 
and Moray (1992) model, developed using data gathered from operators working with a process 
control simulation, predicts that “current level of trust” is based on the previous level of trust the 
operator had, the current system performance, previous system performance, the occurrence of a 
fault, and previous occurrences of faults.  The authors conducted an empirical study used to 
provide the basis for the regression equation.  Raeth and Reising (1997) updated this model and 
gathered model-prediction data for an aviation setting. Their updated trust model included a 
history of automation performance over time, continuous (rather than discrete) fault ranges, and 
added a parameter to account for “danger.” They also developed two different models to predict 
the trust level of an expert versus a novice pilot.  The difference between these equations is that a 
novice pilot has a more volatile sense of trust; s/he is more likely to base trust on the immediate 
previous experiences.  In contrast, an experienced pilot has a deeper understanding of the 
automation, and his/her trust is less swayed by faults or recent events.  Raeth and Reising ran 
their model for a particular flight combat scenario (including dangerous events) and found that 
the results of trust changes through the scenario for the expert and novice pilots generally 
matched the researchers’ qualitative expectations.   

3.4.9 Adaptive Automation 
Another important issue in automated systems, with potential applications in NextGen airspace, 
is the use of adaptive automation.  These systems attempt to infer when an operator or pilot is in 
need of additional support, typically based on high workload or poor task performance, and to 
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provide this assistance through intervening automation.  None of the sources reviewed in this 
effort identified models that specifically address pilot performance while using adaptive 
automation, but several papers did address ways to predict when the pilot would be in need of 
assistance. These papers typically included visual attention or workload models (see 3.2). 
 
Donath and Schulte (2009) describe a study (with one pilot as a subject) in which eye 
movements were measured during high and low workload tasks in a flight simulator.  The intent 
of the effort was to develop adaptive automation, and this preliminary investigation was to see if 
eye movements could provide an indication of high workload, and thus serve as a prompting 
mechanism for automation to “step in and offer assistance.”  The results indicated that, in high 
workload situations, eye movements did indeed change; the participant viewed fewer visual 
areas of interest, and exhibited tunnel vision.  No model was developed or proposed, and the 
authors stated that individual “calibrations” would need to be performed for each pilot.   
 
Bzostek, Small, Bagnall, and Walters (2005) developed a model to predict pilot visual and 
auditory workload during flight, based on the types of indications presented on the flight deck.  
The long-term goal of this effort was to develop adaptive information presentation systems that 
would give pilots critical information in the modality (visual or auditory) that they would be 
most likely to notice.  The authors’ modeling indicated potential benefits of context-sensitive 
information presentation. “Correct modality” indications were noticed more than 20 percent 
faster than baseline conditions.  There was no empirical validation. 
 
Similarly, Schurr (2011) developed an adaptive automation system for presenting different levels 
of alert warnings, for both external hazards (e.g., traffic conflicts) and internal hazards (e.g, 
engine conditions). Fundamental to the system was a model of what the pilot needed to know 
(e.g., be alerted about by automation), and in what priority, given multiple warnings. Such a 
model included an inference of pilot state and workload, as is essential to all effective adaptive 
automation systems. This system, and hence the model contained within, however, was not 
validated. 
 
The ALARMS (the ALerting and Reasoning Management System; Carlin et al., 2010) project 
included developing a pilot model for predicting when additional stages of automation are 
needed for an integrated alerting system.  ALARMS used a workload-based pilot performance 
model to support prioritization of alarms and instantiate different levels of automation.  The 
model included three types of pilot workload:  mental effort, task demands, and ongoing task 
performance.  These are input by the ALARMS user, as one of three possibilities:  low, medium, 
or high.  The ALARMS user also inputs other data to characterize a scenario (hazard sources, 
and type of indication).  ALARMS predicts when different stages of automation will need to be 
invoked, and provides displays to support pilots in those scenarios.  No empirical validation was 
performed.  ALARMS can be used for the en route, approach, and landing phases of flight.  
Substantial efforts were made to identify relevant scenarios, and to develop information 
presentation formats.  The researchers performed a work domain analysis, and cognitive task 
analyses, working with aviation SMEs and using aviation procedures.   These efforts went into 
developing the models and tools; they were not actually used after the fact to verify that the 
predictions were reasonable.  
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3.4.10 Summary 
There are many ways to model pilot-automation interaction and predict performance on the flight 
deck.   These can include attention and noticing changes, the design of the automation (interface, 
interaction), the tasks the pilot performs when using the automation, errors that the pilot can 
potentially commit due to learning certain patterns in the automation.  Because there are so many 
factors that can have an influence, it is difficult to capture all in a single model. The ADAT 
software does integrate several process models applicable to the FMS in one set of software. 
However, to date, the CASCaS effort (Lüdtke, Osterloh, & Frische, 2012) appears to be the most 
comprehensive type of pilot performance model, addressing attention, interaction, and errors. 
 
It is important to note that certain critical aspects of pilot-automation interaction beyond the FMS 
have yet to be well addressed by computational modeling. Three of the most prominent are 
decision aiding, alerting responses, and adaptive automation. In decision aiding category, we 
might include models that predict the pilot’s compliance with intelligent decision aids regarding 
route diversion around weather or engine failure diagnostics.  In the alerting responses category, 
we might include application of signal detection models to predict pilot’s degree of compliance 
with trajectory collision alerts and resolution advisories (e.g., TCAS). As described above, 
adaptive automation models are lacking.  
 

3.4.11 Statistics of Validation of PAI Models 
Validation Data 
Of the 16 papers reviewed for this deep dive, 8 included a validation effort, although only three 
reported correlation data.  These validation efforts have been described above, when the model 
was introduced.  Typically the validations were limited in scope, to address only specific aspects 
of model predictions.     
   

• Deutsch & Pew (2004) – qualitative comparisons of scanning behavior among areas of 
interest on a flight deck 

• Gil, Kaber, et al (2009) – correlations between workload measures and complexity 
indices 

• Lüdtke & Osterloh (2010) – comparison of performance in 24 trials (when did pilots fail 
to verify or fail to notice?) 

• Lüdtke, Osterloh & Frische (2012) – validation of a very limited set of parameters  
• Manton & Hughes (1990) – regression equation to predict interaction time 
• Pisanich & Corker (1995) – “no significant difference” between model predictions and 

empirical performance 
• Schoppek & Boehm-Davis (2004) – qualitative comparison of mode changes  
• Sebok, Wickens, et al (2012) – procedures module, SEEV and N-SEEV models. 

Comparisons between ADAT predictions and performance in comparing new and old 
designs. 

 
Validations were often qualitative, comparing the pattern of results with the general pattern of 
model predictions (e.g., Lüdtke & Osterloh, 2010 – when did pilots fail to verify?; Schoppek & 
Boehm-Davis, 2004 – when did pilots switch mode?).  Further, one validation effort (Pisanich & 
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Corker, 1995) used a t-test to show that empirical results were “not significantly different from” 
model predictions.   
 
Verification Efforts 
Many modeling efforts included a verification component. To complete the verification process, 
authors performed task analyses, observed expert performance, gathered empirical data to inform 
model development.  In addition, most authors also consulted with aviation SMEs to perform a 
“reality check” of results, to identify and explain differences between model predictions and 
actual (empirically-gathered) or expected (based on operational experience) performance.  
Further, researchers typically attempted to perform their own “common-sense” evaluation of 
results. 
 

3.4.12 References Included in the Pilot-Automation Interaction Deep Dive 
Boehm-Davis, D.A., Holt, R.W., Diez, M., & Hansberger, J.T.  (2002).  Developing and 
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adaptation system (IMSAS). In Proceedings of the Human Factors and Ergonomics Society 
Annual Meeting (Vol. 50, No. 11, pp. 1170-1174). SAGE Publications. 

Carlin, A.S., Alexander, A.L., & Schurr, N. (2010). Modeling pilot state in next generation 
aircraft alert systems. Aptima, Inc. 
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modeling. Proceedings of the Human Factors & Ergonomics Society Annual Meeting. Santa 
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at the First Aviation Psychology Conference, Scheveningen, Netherlands. 

Pisanich, G. M., & Corker, K. M. (1995, April). A predictive model of flight crew performance 
in automated air traffic control and flight management operations. In Proceedings of the 8th 
international symposium on aviation psychology (pp. 335-340).   

Polson, P.G., & D. Javaux (2001).  A model-based analysis of why pilots do not always look at 
the FMA.  Proceedings of the 11th International Symposium on Aviation Psychology.  
Columbus, OH:  The Ohio State University. 

Raeth, P.G., Reising, J.M. (1997). A model of pilot trust and dynamic workload allocation. 
Proceedings of the 1997 IEEE National Aerospace and Electronics Conference (NAECON), 
July 14-18. 

Schoppek, W., & Boehm-Davis, D.A. (2004). Opportunities and challenges of modeling user 
behavior in complex real world tasks.  MMI-Interaktiv, 7, June.  ISSN 1439-7854. 

Sebok, A., Wickens, C., Sarter, N., Quesada, S., Socash, C., Anthony, B. (2012).  The 
Automation Design Advisor Tool (ADAT):  Development and Validation of a Model-Based 
Tool to Support Flight Deck Automation Design for NextGen Operations.  Human Factors 
and Ergonomics in Manufacturing and Service Industries, 22(5), 378-394. 

Uijtde Haag, M., Duan, P., Schnell, T., Cover, M., Anderson, N., Snow, M., Etherington, T., 
Rademaker, R., & Theunissen, E. (2011).  Hazard and Integrity Monitoring and Integrated 
Alerting and Notification Methods.  Presentation delivered to the 2011 NASA Aviation 
Safety Technical Meeting in St. Louis, MO. 

 

3.5. Roles and Responsibilities (R&R) Models 

3.5.1 Introduction  
Roles and responsibilities (R&R) have been modeled from two perspectives. One is the shift in 
R&R from ground (ATC) to the air (pilot) brought about by many NextGen considerations and 
ConOps (or their predecessors in Free Flight). The other is the shift or distribution of 
responsibilities between pilot flying and pilot not flying (or pilot flying PF and pilot monitoring, 
PM; the terms we used here). We also note three different classes of questions that the models 
address. The first are those in which the model simply predicts performance of “the crew” as a 
whole, but does not attempt (or the validation effort does not portray) the separate behavior and 
cognition of PF and PM. The second are those in which separate representations of PF and PM 
are predicted by the model. The third, and probably most relevant to the R&R concept (but least 
available) are models where a change in R&R is modeled; for example, as above, a shift from 
ground to air for traffic separation management, or an added responsibility given to PM or PF for 
some duty, imposed by NextGen.  The following describes four major clusters of modeling 
efforts. 
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3.5.2 MIDAS Efforts  
Two studies were done with an earlier version of the MIDAS software (‘Air’ MIDAS, MIDAS 
v1). Pisanich and Corker (1995) describe two ‘Air’ MIDAS applications to crew performance 
(without distinctly describing R&R for PF and PM). The first of these, described also in 3.4.7, 
examined the latency of the crew’s decision to select different automation modes prior to the top 
of descent, as a function of the level of automation of the mode, and the time remaining to TOD. 
The authors report a qualitative validation that the model “behaved” in a way that was consistent 
with observations of pilots carrying out a corresponding LOFT scenario. In the second effort 
described in the same paper, the authors programmed MIDAS to process and accept the advice 
of the CTAS Descent Advisor, an early form of automated decision aiding, such as that being 
considered in current NextGen plans. Predicted times to accept were modeled, and parameters 
adjusted based upon four crews flying a corresponding simulated approach. Then the ‘Air’ 
MIDAS model predicted times were compared against four additional crews, in a “split-halves” 
validation. Predicted and obtained times were found not to differ from each other, based upon a 
t-test of equivalence. However, we have noted earlier that this is a questionable approach for 
model validation and the authors do not provide information on the actual acceptance times (for 
model and for pilots), so that the degree of correspondence cannot be established. 
 
In Corker and Pisanich (1998) the authors use ‘Air’ MIDAS to generate a prediction of the 
crew’s use of the CDTI (cockpit display of traffic information) to initiate a break-off maneuver 
when separation from traffic aircraft went below a minimum. Different levels of traffic density 
were also varied. The authors again compare ‘Air’ MIDAS predictions with obtained data, 
reporting no differences (via a t-test), but provide no further data regarding actual predicted and 
obtained times. Thus, as with Pisanich and Corker (1995) this is a weak form of validation. Both 
papers however do a good job of explaining the workings of ‘Air’ MIDAS. 
 
Three MIDAS studies of R&R (using MIDAS v5), have provided a better focus on the actual 
differences in R&R between PF and PM. Gore, Hooey, Haan, Bakowski and Mahlsted (2011) 
used MIDAS v5 to model the descent with both a conventional and an “augmented” display 
suite, including a highway in the sky (HITS) display for the pilot on a HUD, and an advanced 
navigational planning display. This effort, described also in the SA deep dive (3.4.6), examined 
the differences in PF and PM SA, for aviation awareness, navigational awareness and hazard 
awareness that were created by the implementation of the augmented display suite and 
differentiated pilot roles and responsibilities. In one condition, both pilots adhered to the 
conventional task hierarchy (aviate, [separate], navigate, communicate, and systems 
management.  In the second, augmented, condition, the PF emphasized the tasks of Aviate and 
Separate (from immediate hazards) while the PM emphasized the tasks of Navigate and Separate 
(from global hazards).  These differences were mediated in the Situation Awareness model by 
changes in task responsibilities and by predicted changes in scan pattern. No validation data were 
provided. 
 
In a second study with the MIDAS v5, Gore, Hooey, Mahlstedt and Foyle (2013) examine how 
the shift in R&R for traffic separation management, from ground to air would change 
predictions. The workload predictions and traffic maneuver time predictions were discussed in 
the context of the workload deep dive. Here we highlight that, using the SEEV model (discussed 
in other deep dives), the authors present predictive data on this responsibility-induced change in 
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scanning (i.e., allocation of visual attention) across three displays (Navigation, primary flight, 
out-the-window), as differentiated between PF and PM.  
 
In a third study (Gore, Hooey, Mahlstedt & Foyle, 2013), two different R&R configurations were 
defined on an RNP approach. In one, both PM and PF were equally responsible for all aspects of 
the flight (aviating, navigating, and hazard separation). In the other, responsibilities were 
distributed so PF was primarily responsible for aviating, and PM was primarily responsible for 
the other two meta-tasks. MIDAS was run under both conditions, and data for channel workload 
(based upon the VACP model, see workload deep dive), for scanning (based on the SEEV 
model), and for detection of an off-nominal event (an RNAV violation alert) were predicted and 
found to produce plausible effects (e.g., verification). No validation was provided. 

3.5.3 Distributed Workload 
Lyall and Cooper (1992), as summarized in the workload deep dive (3.2), also focused on using 
the VACP model to predict the distribution of workload between PF and PM (as with Gore, 
Hooey, Malhstedt & Foyle, 2013, above), and how this workload distribution changed between 
the two crew members over two different departure procedures. A similar approach was taken by 
Stone et al (1987) in a paper also reviewed in the workload deep dive. The advantage of such 
model predictions is that they can be used to identify workload imbalances, and hence justify 
shifts in task responsibilities to the less-loaded crew member. Validation data were not 
apparently collected for these modeling efforts. 

3.5.4 Knowledge Based Models 
ACT-R was employed by Boehm-Davis Holt, Chong, and Hasberger (2004) to model PF and PM 
behavior during a top-of-descent period. The model was used to predict the effects of different 
flight workload levels (imposing an “ATC task”, whose nature was undefined in the article) and 
different levels of skill/knowledge, a feature that ACT-R is ideally suited to predict.  ACT-R was 
augmented in this two-crew scenario to include a communications module; between separate 
ACT-R models of PF and PM. Primary model outputs were the number of procedural steps 
completed or omitted, and important distinctions between these for PF and PM were observed 
across the four conditions of workload and knowledge. There was no validation of these 
predictions. 
 
Tidhar et al. (1998), present a model called SWARMM (smart whole air mission model), based 
on a SOAR architecture, which is designed directly to characterize distributed responsibilities 
and tasks in two-seat fighter aircraft.  As such it is only indirectly relevant to the commercial 
cockpit, because the nature of duty assignments (between flying the aircraft and weapons 
management) is quite different. There is little presentation of model predictions, and no 
validations. However the paper may be an important reference for those undertaking R&R 
models, because of the nature of assumptions made regarding team performance. 

3.5.5 Distributed Risk Model 
A paper from the NLR (Netherlands Aerospace Research Lab), by Blom, Stroeve and their 
colleagues was centered around one generic model – TOPAZ  (Stroeve, Blom, & Baaker, 2009), 
also described in the SA deep dive (3.3.3). The model focused on predicting runway incursions 
resulting from one aircraft failing to stop at an intersection where another was on a take-off run.  
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(Other applications of TOPAZ by these same authors are treated in the error deep dive section.) 
The focus of the model was to predict objective risks. Thus this model incorporated three 
component models of two pilots and a ground controller in their interaction, and hence highlights 
the different roles and responsibilities of the three agents. Because it was a Monte Carlo 
simulation model, repeated runs predicted the relative frequency of these very rare events 
(runway collisions).  That is, the model allowed users to exercise different environmental, pilot 
and equipment conditions (e.g., high vs. low surface visibility, presence or absence of alerting 
systems, different kinds of pilot errors) to examine the influence of these factors on incursion 
likelihood, and the contributions of the different agents to this joint risk likelihood. 
 
While the model only reports verification rather than validation, to some extent this limitation is 
understandable, given that the extremely low number of such incursions means that capturing 
reliable numerical estimates of their frequency of occurrence (and hence, reliable targets for 
model prediction) is very difficult. 
 

3.5.6 Conclusion: R&R Models 
A positive feature of these models is that a majority of model verifications have examined the 
most important and NextGen-relevant kind of verification: of the change in R&R brought about 
by flight deck and/or procedural changes. Most have looked at changes or differences within the 
flight deck, while only a minority has examined changes between ground and air, highly relevant 
for NextGen. Finally, we note that most of them have produced predictions that can generalize to 
NextGen specific changes or procedures. Hence many of these models are quite promising.  
 

3.5.7 Statistics of Validation of R&R Models 
Altogether 9 separate modeling efforts, including a total of 12 applications, were identified that 
focused on roles and responsibilities. Of these, three could be said to be of category 1 (overall 
crew performance), two of category 2 (different predictions for the players on the team, but no 
examination of the change in R&R brought about by changes in procedure or flight deck), and 
seven were of category 3 (predicting such R&R changes). 
 
In terms of validation, only three of the efforts included validation data, and of these, two used 
inappropriate t-test statistics to assess validation (and did not contain performance data to allow 
readers to compute a correlation). The third used a qualitative form of validation. 
 

3.5.8 References for the Roles and Responsibilities Model Review 
Boehm-Davis, D. A., Holt, R. W., Chong, R., & Hasberger, T. (2004). Using cognitive modeling 

to understand crew behavior. Human Factors & Ergonomics Society Annual Meeting 
Proceedings. Santa Monica, CA. 

Corker, K. M. & G. Pisanich (1998). Cognitive performance for multiple operators in complex 
dynamic airspace systems: Computational representation and empirical analyses. 
Proceedings of the Human Factors and Ergonomics Society. 1: 341-345. 
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Moffett Field, CA: NASA Ames Research Center. 

Hooey, B. L., Gore, B. F., Wickens, C. D., Salud, E., Scott-Nash, S., Socash, C., & Foyle, D. C. 
(2010). Modeling pilot situation awareness. Paper presented at the Human Modelling of 
Assisted Technologies Workshop, Belgirate, Italy. 
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skills and aircraft operation. Human Factors & Ergonomics Society Annual Meeting 
Proceedings. Santa Monica, CA. 
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Automated Air Traffic Control and Flight Management Operations.  Proceedings of the 
Ohio State 8th International Symposium on Aviation Psychology, Columbus, Ohio. 
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3.6 State of Verification and Validation Efforts Across Deep Dive Models 
Table 3.6.1 below summarizes the verification and validation efforts for the individual models 
reviewed in the deep dive analysis.  Each modeling effort is rated along an 8-point scale, with an 
X provided in the column corresponding to the level of verification or validation performed.  The 
first four points indicate that a verification was performed.  The second four points indicate that a 
validation was performed.  The individual numbers provide a ranking of the quality of the 
verification or validation of the model, and correspond to the following criteria: 
 

1. Used SME-based data to build the model.  This includes a cognitive task analysis, work 
domain analysis, or similar. 

2. The researchers performed a reality check of the model predictions – did the results make 
sense? 

3. The researchers had aviation SMEs perform a reality check of model predictions. 
4. The researchers worked with SMEs to conduct systematic walkthroughs of results to 

identify concerns. 
5. Empirical data were compared with model predictions for a qualitative validation 

assessment (did the general trends match?) 
6. Correlation data were used, but the subjects were students (or non-pilots) working on a 

low-fidelity (e.g., desk-top) or non-aviation simulation. 
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7. Correlation data were used, but either the subjects were not pilots or the simulation was 
not a high-fidelity aviation simulation. 

8. Correlation data were used, subjects were pilots working on a flight simulator or in actual 
operations. 

  
Note that this table does not distinguish between partial and complete validation efforts.  Further, 
many validation efforts included different degrees of validation.  For example, a model that 
predicts visual scanning, errors, and workload might include qualitative analyses of the error and 
workload data, but also include a quantitative evaluation of scanning data.  For simplicity, the 
table below indicates the highest degree of verification or validation performed in the particular 
study.  This can give a somewhat optimistic picture of the state of verification and validation 
efforts.  For any modeling effort that included some level of validation, we assume that a 
verification will have taken place, but we have not checked a particular box within the four 
verification columns at the left. 
 
Finally, it should be noted that some modeling efforts did not describe any attempts to obtain 
SME input.  These are indicated with a “- -“ in the first column of the table. This lack of SME 
input could be due to the authors not explaining where they gathered their data, or (in the case of 
Gore, 2008) because the paper describes an approach to modeling, rather than a specific 
modeling project with a certain degree of verification or validation. A corresponding table for 
modeling architectures is presented in Section 4.  
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Modeling Effort 
Model or 
Architecture 

Deep dive in 
which it was 
evaluated 

Verification Validation 

   
1 2 3 4 5 6 7 8 

Blom, Corker, Stroeve & van der Park 
(2003) 

Air MIDAS E X        

Boehm-Davis, Holt, Chong & 
Hansberger (2004) 

ACT-R R&R    X     

Boehm-Davis, Holt, Diez & Hansberger 
(2002) 

ACT-R A, SA     X    

Burdick & Schively (2000) / Shively, 
Brickner & Silbiger (1997)  

MIDAS SA        X 

Byrne, Kirlik & Fleetwood (2008) ACT-R E     X    
Carlin, Alexander & Schurr (2011) ALARMS A X        
Corker & Pisanich (1998) Air MIDAS R&R     X    
Corker, Muraoka, Verma, Jadhav & 
Gore (2008) 

Air MIDAS E     X    

Deutsch & Pew (2004) D-OMAR A     X    
Deutsch & Pew (2008) D-OMAR E, WL, MT     X    
Donnelly, Noyes & Johnson (1997)   IDM SA X        
Fotta, Nicholson & Byrne (2007) ACT-R E X        
Gil, Kaber, Kim, Kaufmann, Veil & 
Picciano (2009) 

E-GOMSL A, WL        X 

Gonzales-Calleros, Vanderdonckt, 
Lüdtke & Osterloh (2010) 

Usability 
Advisor 

A --        

Gore & Corker (2000a) Air MIDAS WL   X      
Gore & Corker (2000b) Air MIDAS WL   X      
Gore (2008) MIDAS WL --        
Gore, Hooey, Mahlstedt & Foyle (2013)  MIDAS R&R    X     
Gore, Hooey, Haan, Bakowski & 
Mahlsted (2011) 

MIDAS WL MT        X 
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Modeling Effort 
Model or 
Architecture 

Deep dive in 
which it was 
evaluated 

Verification Validation 

   
1 2 3 4 5 6 7 8 

Gore, Hooey, Socash, Haan, Mahlsted, 
Bakowski, Gacy, Wickens, Gosakan & 
Foyle (2011) 

MIDAS WL        X 

Hooey, Gore, Wickens, Salud, Scott-
Nash, Socash & Foyle (2010)   

MIDAS SA, R&R    X     

John, Blackmon, Polson, Fennell & Teo 
(2009) 

ACT-R A    X     

Karikawa, Takahashi, Ishibashi, 
Wakabayashi & Kitamura (2006) 

PCS E, SA     X    

Keller, Lebiere & Shay (2004)  ACT-R SA   X      
Laudeman & Palmer (1995) TLAP WL, MT        X 
Lebiere, Archer, Best & Schunk (2008) ACT-R E, WL     X    
Lüdtke & Osterloh (2010) CASCaS A     X    
Lüdtke, Osterloh & Frische (2012) CASCaS A       X  
Lüdtke, Osterloh, Mioch, Rister & 
Looije (2009) 

CASCaS E, A     X    

Lyall & Cooper (1992) MRT R&R, WL, MT  X       
Manton & Hughes (1990) MRT A, WL    X     
McNally (2005) / Zacharias, Miao et al 
(1996)   

SOAR SA  X       

Miller (1998) MRT WL  X       
Miller (2001) ASHRAM E --        
Muraoka & Tsuda (2006) OPSAMS WL X        
Nikolic & Sarter (2003) (ASRS data) E        X 
Parks & Bouceck (1989) TLAP WL        X 
Pisanich & Corker (1995) Air MIDAS A, R&R     X    
Polson & Javaux (2001) GOMS A, MT  X       
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Modeling Effort 
Model or 
Architecture 

Deep dive in 
which it was 
evaluated 

Verification Validation 

   
1 2 3 4 5 6 7 8 

Raeth & Reising (1997) (trust / 
workload 
allocation) 

A  X       

Rickard & Levison (1981) OCM WL        X 
Riley, Lyall, Cooper & Wiener (1991)  MRT MT, WL        X 
Salmon, Stanton, Young, Harris, 
Demagalski, Marshall, Waldman & 
Dekker (2002) 

SHERPA E     X    

Salmon, Stanton, Young, Harris, 
Demagalski, Marshall, Waldman & 
Dekker (2003) 

SHERPA E     X    

Sarno & Wickens (1995) MRT WL      X   
Schoelles & Gray (2011) ACT-R MT  X       
Schoppek & Boehm-Davis (2004) ACT-R A, MT     X    
Schurr (2011) ALARMS WL X        
Sebok, Wickens, Sarter, Quesada, 
Socash & Anthony (2012) 

SEEV, 
N-SEEV, 
ADAT 

A, WL        X 

See & Vidulich (1998) Microsaint SA, WL       X  
Stanton, Salmon, Harris, Demagalski, 
Marshall, Waldman & Dekker (2003) 

SHERPA E     X    

Steelman-Allen, McCarley & Wickens 
(2011) 

N-SEEV WL        X 

Stone, Culick & Gabriel (1987)   TLAP R&R, WL    X     
Stroeve & Blom (2005) TOPAZ E  X       
Stroeve, Blom & Bakker (2009) TOPAZ E, SA, R&R   X      
Stroeve, Blom & Bakker (2011)   TOPAZ E, SA   X      
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Modeling Effort 
Model or 
Architecture 

Deep dive in 
which it was 
evaluated 

Verification Validation 

   
1 2 3 4 5 6 7 8 

Svensson & Wilson (2002)   (regression) SA     X    
Tidhar, Heinze & Selvestrel (1998) SWARMM R&R X        
Uijtde Haag, Duan, Schnell, Cover, 
Anderson, Snow, Etherton, Rademaker 
& Theunissen (2011) 

SOAR A --        

Walden & Rouse (1978) (queueing) MT     X    
Wickens, Bagnall, Gosakan & Walters 
(2011) 

N-SEEV MT  X       

Wickens, Goh, Helleberg, Horrey & 
Talleur (2003) 

SEEV MT, SA       X  

Wickens, Harwood, Segal, Tkalcevic & 
Sherman (1988) 

TLAP, 
MRT 

MT, WL       X  

Wickens, Hooey, Gore, Sebok & 
Koenecke (2009) 

N-SEEV SA       X  

Wickens, Larish & Contoror (1989) TLAP, 
MRT 

WL       X  

Wickens, McCarley, Alexander, 
Thomas, Ambinder & Zheng (2008) 

A/SA E, MT, SA     X    

Wickens, Sebok, Kamienski & Bagnall 
(2007)   

A/SA, 
SEEV 

SA    X     

Notes: A-Automation interaction, E-Error, MT – Multi-task, SA – Situation Awareness, WL – Workload, R&R – Roles and 
Responsibility
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4. Model Architectures 

4.1 Overview 
Model architectures are defined differently than individual modeling efforts.  A model 
architecture is a framework for creating any number of more specific models to predict human 
performance.  The architecture can be a framework for representing cognition or attention (e.g., 
ACT-R or SEEV) that eventually needs to be implemented within a programming language, or 
an architecture can be a specific modeling tool that allows users to create models (e.g., 
IMPRINT).   
 
Across our reviews of modeling efforts, through all five deep dives, we have identified several 
architectures that were used in multiple modeling efforts, and were often used to model multiple 
aspects of pilot performance (e.g., situation awareness, workload). We describe these 
architectures below. While these descriptions may be partially redundant with the specific model 
effort applications discussed in Section 3, our emphasis here is somewhat different: how does the 
model work, how might it contribute to several different modeling aspects, and how usable and 
available is it?  
 
Table 4.1 provides a list of key architectures and the aspects of pilot performance that they 
modeled.  These data were compiled from the spreadsheet developed as part of this research.  
Each modeling effort that could be associated with a specific architecture (e.g., ACT-R, MIDAS) 
was identified.  The specific aspects of pilot performance that were modeled in these efforts were 
also identified and indicated with *’s in the table.  Finally, the extent to which the architecture 
had been validated was calculated by taking the total number of modeling efforts (again, in the 
spreadsheet) for a given architecture and dividing that into the total number of validated efforts 
for that architecture.  
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Table 4.1: Pilot modeling aspects and validation efforts addressed by different major architectures.  

              
Pilot 
Aspect: 

Human- 
Automation 
Interaction 

Communication Decision 
making 

Error Manual 
Control 

Multi-
Tasking 

Procedures Roles & 
Responsibilities 

Situation 
Awareness 

Spatial 
Disorientation 

Visual 
scanning 

Workload Percent of 
efforts that 
included at 
least a 
partial 
Validation 

Architecture              
ACT-R * * * * -- * * * * -- * * 6/15; 40% 

Air MIDAS * * * * -- -- * -- -- -- * * 6/11; 55% 

CASCaS * -- -- * -- * * -- -- -- * -- 4/10; 40% 

MIDAS -- * * * -- * * * * -- * * 6/11; 55% 

MRT  * -- -- -- -- * -- * -- -- -- * 3/8; 38% 

OCM -- -- -- -- * -- -- -- -- -- * * 7/9; 78% 

SEEV, N-
SEEV, 
A/SA 

* -- * -- -- * -- -- * -- * -- 5/7; 71% 

TLAP -- -- -- -- -- * -- -- -- -- -- * 4/5; 80% 

TOPAZ -- * * * -- -- * -- * -- -- -- 1/6; 17% 

• MRT – includes W/Index 
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4.2 Adaptive Control of Thought – Rational (ACT-R) 

4.2.1 What Is It? 
The Adaptive Control of Thought – Rational (ACT-R) is a unified theory of cognition that integrates 
theories of attention, cognition, and motor actions.  It was developed by Carnegie Mellon University 
for the Office of Naval Research in 1993, and has been in use and updated multiple times since then.  
ACT-R is a theory of cognition that has been represented as executable software that is programmed 
in LISP. 
 
ACT-R provides a framework for representing human cognition.  It models cognition through 
“production rules” or goal-directed behavior that is implemented through a series of “if-then” rules.  
It includes perceptual inputs and motor outputs.   
 
ACT-R’s main components are modules, buffers, and the pattern matcher.  ACT-R uses perceptual-
motor modules (visual and manual modules) to simulate interaction with the physical environment.  
Memory modules simulate declarative and procedural memory and allow the modeler to represent 
an operator accessing different types of information from long-term memory.  Declarative memory 
consists of simple facts.  Procedural memory consists of representations for how to perform different 
tasks. 
 
Buffers are interfaces for each of the ACT-R modules, except the procedural memory module. The 
contents of each buffer at a given time represent the state of ACT-R at that moment.  The pattern 
matcher uses the buffer contents to identify a relevant schema to select goals and behavioral rules.  
Cognition is modeled as a succession of these changes as instructed by the pattern matcher.  
 
ACT-R does not have a goal hierarchy, as a pre-established hierarchy would suggest perfect memory 
on the part of the modeled operator.  With the pattern matcher, whatever situation provides the 
closest match is what changes the state of the system.   
 
Another important aspect of ACT-R is that it models the actual time required for cognitive steps 
(e.g., retrieving and item from declarative memory) or implementing an action (e.g., shifting gaze, 
selecting an item on a display).  Thus it readily models procedural activities such as programming an 
FMS. The times, provided as default parameters in ACT-R, are based on psychological theories or 
empirical research (e.g., 50 msec to retrieve information; Fitts’ law for scanning a display or 
selecting a control).  In addition to timing aspects, ACT-R models errors of omission, where a 
retrieval from memory fails, and errors of commission, where an error occurs due to imperfect 
matching. 
 
ACT-R 6 version 1.4 [r1261] (the latest version as of August 9, 2012) is available on the website:  
http://act-r.psy.cmu.edu/actr6/  
 
 
Inputs: Data from psychology experiments, general assumptions about human cognition, 
assumptions about a particular domain 
 
Outputs: overt behavior, time to perform the task, accuracy in the task, and whether or not the task 
was performed 
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4.2.2 What Has It Been Applied To? 
ACT-R has been used in aviation, and in many other domains.  These include human-computer 
interaction, department of defense research, education (in cognitive tutoring systems), and 
neuropsychology.  It has been used to predict the time to complete task sequences (Fleetwood, 
Lebiere, Archer, Mui, & Gosakan, 2006), if operator error occurs (John et al., 2009), and the type of 
error (Boehm-Davis et al., 2002).  
 
ACT-R models have been used in more than 700 different scientific publications. 
A long list of references is available: http://act-r.psy.cmu.edu/publications/index.php. 
 

4.2.3 Where Can You Get It? 
ACT-R is an open-source architecture, available online at:   
http://act-r.psy.cmu.edu/  
 

4.2.4 How Usable Is It? 
ACT-R must be implemented using the LISP programming language.  The CMU ACT-R website 
offers numerous resources for helping potential ACT-R modelers in learning how to use the tool.  
Tutorials and manuals are available, free of charge, online http://act-r.psy.cmu.edu/actr6/.  In 
addition, CMU hosts a summer school and workshops for learning to use ACT-R: http://act-
r.psy.cmu.edu/workshops/  Further, CMU provides a contact person for support 
db30@andrew.cmu.edu 
 

4.2.5 How Extensively Validated Is It? 
ACT-R is extensively validated.  Validation efforts are used to update and refine the cognitive 
theory behind the model.   
 

4.3 Attention – Situation Awareness (A/SA) 

4.3.1 What Is It? 
The A/SA (Attention – Situation Awareness) modeling architecture was developed by researchers at 
the University of Illinois for NASA (Wickens, McCarley et al., 2008).  It predicts operator situation 
awareness by using an attention model and a belief-updating module.  The underlying attention 
model is SEEV (salience, effort, expectancy, and value).   
 
SEEV predicts operator visual scanning, and says that scanning is driven by two bottom-up factors 
(salience and effort) and two top-down factors (expectancy and value).  The salience, or 
obviousness, of a visual indication increases the likelihood that a cue will draw the operator’s 
attention.  Expectancy, the expectation that the information is changing frequently (events occurring 
rapidly) and therefore needs to be sampled often, also affects how often the operator looks at a 
display.  Value, or the importance of information, increases the likelihood that the operator will view 
the information at the location of the valued commodity.  Effort, the difficulty associated with 
moving attention to  a display – either due to distance from the current visual focal point, or the need 
to navigate among pages in a multifunctional display – is the only factor that decreases the 
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likelihood of an operator viewing a display more often. Experienced operator scanning is driven 
relatively more by top-down factors (primarily by expectations and importance of information). The 
model runs as a discrete event simulation of SEEV, with probabilistic movement to attentional 
locations, to a degree proportional to the overall contributions of the four components.  
  
Situation awareness is modeled according to two stages of the Endsley (1988) three-stage model, 
where stage 1 represents perception and stage 2 is comprehension (See Section 3.3 for elaboration of 
these concepts).  For an operator to have awareness, s/he must perceive or attend to the relevant 
display.  SEEV predicts whether or not the operator perceives the data.  Once stage 1 awareness is 
attained, the belief-updating module in the A/SA architecture makes further predictions.  A/SA 
models situation awareness on a scale of 0 to 1, where 1 is perfect awareness.  Each display is 
associated with a particular type of awareness that the operator needs.  When the display is viewed, 
awareness for the parameters on that display increases to 1.  Over time, awareness decreases by a 
postulated decay function.  For accurate information, the awareness decreases after a minute, but if 
distracting information is viewed, awareness decreases much more rapidly.  The stage 1 SA of 
individual parameters is aggregated, and when sufficient parameter awareness exists, the operator is 
said to have achieved higher stages of SA.  The overall awareness, in turn, drives scanning behavior.  
If the modeled operator has good SA, scanning is driven primarily by expectancy and value.  
Conversely, if the modeled operator has poor SA, sub-optimal scanning results.  In the application 
reported in Wickens, McCarley et al. (2008), SA affects operator decision making, with better SA 
resulting in better decisions. 
 
Visual scanning may be driven by habit, as in SEEV; but also by salient time stamped events that 
capture attention, such as the onset of a single warning indicator. The N-SEEV (Noticing-SEEV) 
model is an extension of SEEV (also developed by University of Illinois for NASA), and predicts 
operator noticing of a change in a visual field (McCarley et al., 2009; Sebok et al., 2006; Steelman-
Allen & Wickens, 2011; Wickens, Hooey et al., 2009).  The N-SEEV model uses SEEV to predict 
scanning, with the difference that a change occurs at some point in a simulation.  The change is 
associated with a pre-defined location and salience in the visual field.  Operator scanning continues, 
and if the operator views the changed display within a given time frame (typically within 10 seconds 
of the change), the operator is said to have noticed the change.  If the operator does not view the 
change within that time frame, N-SEEV predicts that change blindness will occur, and the operator – 
even if s/he views the display – will not notice the difference.  N-SEEV is typically run multiple 
times to generate a distribution of noticing times.  The probability that the operator will notice the 
change is calculated based on the probability of runs that had fixations landing on the display where 
the relevant event occurred before the (e.g., 10 second) cutoff.  The predicted time required for the 
operator to notice the change is calculated as the average noticing time for all of the “noticed” 
changes.    
 

4.3.2 What Has It Been Applied To? 
• SEEV: Aviation, Driving, Nursing 
• A/SA: Aviation 
• N-SEEV: Aviation 
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4.3.3 Where Can You Get It? 
The A/SA, SEEV, and N-SEEV architectures are not software tools, nor are they particularly 
complex frameworks (like, e.g., ACT-R).  They are practical models that can easily be implemented 
in a variety of programming languages.  It is suggested that the models are developed with SME 
input, to identify the salience, effort, expectancy and value parameters for the visual displays in 
different operating conditions.   
 

4.3.4 How Usable Is It? 
The A/SA, SEEV, and N-SEEV architectures are easy to apply.  No online support is available for 
these architectures but a wide variety of publications describes their implementation.  The SEEV 
model can be implemented with simple analytic equations, although SMEs are required to estimate 
parameters of expectancy and value. 
 

4.3.5 How Extensively Validated Is It? 
A/SA, SEEV, and N-SEEV have all been validated against aviation human performance data.   
 

4.4 The Cognitive Architecture for Safety Critical Task Simulation (CASCaS) 

4.4.1 What Is It? 
CASCaS (Cognitive Architecture for Safety Critical Task Simulation) was developed as part of a 
European Union project, HUMAN: Model-Based Analysis of Human Errors During Aircraft 
Cockpit System Design1.  The intent for CASCaS was to address specifically the cognitive processes 
that are relevant for safety critical system design, particularly in aviation.  As Lüdtke, Osterloh, and 
Frische (2012, p.1) state: “The innovative aspect of CASCaS is the prediction of human errors 
resulting from an interaction of (1) learned mental models (Routine Learning/Learned Carelessness), 
(2) actual limited cognitive performance and (3) safety nets in aircraft cockpit design (e.g. flashing 
indication, alerts and crew interaction).” 
 
The HUMAN project included an effort to create an executable flight crew model that incorporated 
cognitive error producing mechanisms.  This model was created using CASCaS, and it interacted 
with a flight simulator and a model of a cockpit interface.  The model included routine learning, the 
learning of shortcuts, and attention allocation (Lüdtke, Osterloh, Mioch, Rister, & Looije, 2009). 
 
The CASCaS model has been used to predict visual scanning behavior, dwell times in areas of 
interest (AOIs), and the time required to notice specific visual indications in the cruise and approach 
phases of flight (Lüdtke, Osterloh, & Frische, 2012).  CASCaS, like ACT-R, is a cognitive 
architecture, which provides a structure and set of if-then rules for simulating human cognition.   
 
CASCaS divides cognitive processes and errors into three different levels, depending on operator 
experience with a particular task:  the autonomous, the associative, and the cognitive level.  These 

                                                
1 This project was performed during 1 March 2008 – 28 Feb 2011. More information is available at: 
EU website:  http://ec.europa.eu/research/transport/projects/items/human_en.htm  
HUMAN Aero site:  http://www.human.aero/  
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correspond, respectively, to the skill-based, rule-based, and knowledge-based levels of behavior 
defined by Rasmussen (1983).  New tasks require significant effort on the part of an operator, and 
are performed at the cognitive level.  These are modeled by the operator having a high-level goal, 
and selection of a plan by which to meet that goal.  When operators are somewhat familiar with a 
task, they are working on the associative level.  These types of tasks are modeled by selection of a 
set of rules.  Finally, frequently performed tasks are autonomous, and performed without conscious 
thought.  These include maneuvering the aircraft (Lüdtke, Osterloh, Mioch, Rister, & Looije, 2009). 
 
In solving problems, humans typically apply the easiest solution – autonomous, if possible; 
associative, if they can identify a relevant pattern for the situation; and cognitive if absolutely 
necessary due to lack of established rules or safety-critical concerns.  The Lüdtke, Osterloh, et al., 
(2009) team focus on error mechanisms at the associative and cognitive levels. 
 
Knowledge in the associative and cognitive layers is stored in the memory component.  Short term 
memory includes data that have been perceived by the modeled operator from the environment or 
derived from rules.  Long term memory stores flight procedures as “if then” rules.  When the “if” 
condition is met, the “then” condition is triggered. Figure 4.1 below shows an overview of the 
CASCaS components. 
 

 
Figure 4.1.  Overview of CASCaS Components 

From http://www.isi-padas.eu/sites/default/files/ISi-PADAS_Newsletter_5.pdf 
In another CASCaS effort (Lüdtke, Osterloh, Mioch, Rister, & Looije, 2009), the CASCaS model 
predicts cognitive errors such as Learned Carelessness and Cognitive Lockup (See 3.1 and 3.4 for 
descriptions of these applications). 
 

4.4.2 What Has It Been Applied To? 
CASCaS has been applied to a variety of aviation tasks, but primarily focusing on pilot error 
mechanisms.  It has also been applied to modeling vehicle driver performance (http://www.isi-
padas.eu/sites/default/files/ISi-PADAS_Newsletter_5.pdf).  
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4.4.3 Where Can You Get It? 
It does not appear that CASCaS is available, neither as open source product nor for purchase.  For 
more information, the reader should contact Dr. Andreas Lüdtke (Lüdtke@offis.de). 
 

4.4.4 How Usable Is It? 
This is not relevant, since the architecture is not available. 
 

4.4.5 How Extensively Validated Is It? 
CASCaS has been quite extensively validated as part of the EU project that funded it.  The effort 
included many modeling phases as well as empirical, pilot in the loop studies.  Validation efforts 
focused on particular aspects of performance (e.g., when an error occurred in seeking additional, 
safety-critical information).   
 

4.5 The Man-machine Integration Design and Analysis System (MIDAS)  

4.5.1 What Is It? 
The Man-machine Integration Design and Analysis System (MIDAS; 
http://humansystems.arc.nasa.gov/groups/midas/) is an established HPM that predicts human-system 
performance under nominal and off-nominal conditions (Gore, 2010). MIDAS is a dynamic, 
integrated human performance model environment that facilitates the design, visualization, and 
computational evaluation of complex man-machine system concepts in simulated operational 
environments. MIDAS symbolically represents many mechanisms that underlie and cause human 
behavior including the manner that the operator receives/detects information from an environment, 
comprehends and registers this information in a memory store, decides on a response, and responds 
to the information within the context of operational rules and human performance capacities. 
MIDAS combines these symbolic representations of cognition with graphical equipment 
prototyping, dynamic simulation, and procedures/tasks to support quantitative predictions of human 
system effectiveness, and improve the design of crew stations and their associated operating 
procedures. MIDAS provides an easy to use and cost-effective means to conduct model simulation 
experiments that explore "what-if" questions about domains of interest. Figure 4.2 illustrates the 
organization and flow of information among the MIDAS components. For a description of the 
MIDAS processes, the reader is directed to Gore (2010). 
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Figure 4.2: Illustration of the flow of information into MIDAS v5. 
 
MIDAS gives users the ability to model the functional and physical aspects of the operator, the 
system, and the environment, and to bring these models together in an interactive, event-filled 
simulation for quantitative and visual analysis (Hart et al., 2001). Operator behavior within a 
MIDAS simulation is driven by a set of user inputs specifying operator goals, procedures for 
achieving those goals, and declarative knowledge appropriate to a given simulation. These asserted 
knowledge structures interact with and are moderated by embedded models of perception for 
extracting information from the modeled world and embedded models of cognition for managing 
resources, memory, and actions. In this way, MIDAS seeks to capture the perceptual-cognitive cycle 
of real world operators who work towards their most immediate goals given their perception of the 
situation and within the limitations of their physical and cognitive capacities. In MIDAS, as in the 
real world, perceived changes in the world - new information or events - may cause changes in the 
adjudged context of the situation triggering new goals or altering methods to achieve current goals. 
Such perceived changes may be precipitated through the behavior of other modeled entities or by 
user specified time-based, condition-based, or probabilistic events set within the simulation (e.g., a 
system failure or the receipt of an incoming air traffic control clearance). It may, in fact, be the 
impact of the operator's own actions which lead to changes in context and goals.  
 
In sum, MIDAS v5 can be used to: develop guidelines (e.g. for NextGen aviation roles and 
responsibilities and information requirements), design and test procedures, conduct “what-if” 
scenario evaluations, design and evaluate cockpit designs and information placement, evaluate 
multi-crew performance designs, predict situation awareness profiles of multiple operators, generate 
stochastic human performance, predict attention drivers, predict cockpit-related attention overload, 
generate human operator workload timelines, and determine optimal strategies for human-
automation interaction. 

 
Inputs: Data from psychology experiments for the empirically-driven operator models (human 
perception, cognition, memory, decision, and behavioral models), task network models input into a 
discrete event simulation tool to represent the tasks and activities required of the human in specific 
contexts, visualizations of anthropometric characters and of the flight deck and other crewstation 
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assumptions (e.g., using a computer aided design [CAD] model for a Boeing 747 cockpit), display / 
environmental information context weights (to populate the attention and situation awareness 
models). 
 
Outputs: 
Overt/observable behavior, time to perform tasks, task accuracy, and task completion / success / 
failure, human error given task failure, operator workload (visual, auditory, cognitive spatial, 
cognitive verbal, fine motor, gross motor, and vocal), task/environmental timelines, current ongoing 
tasks, situation awareness profiles, the task network of the required operator actions, CAD of 
candidate cockpit designs, operator strategies for human automation interaction and integration. 
 

4.5.2 What Has It Been Applied To? 
Primarily to civilian cockpit design, but applications of MIDAS have also been made to space 
systems (crew vehicle exploration, ISS interface, robotic arm control), military helicopters, and air 
traffic control. The full list of MIDAS application domains can be found online at 
http://humansystems.arc.nasa.gov/groups/midas/applications.html while the publications reporting 
on these and on the empirically driven operator models can be found online at 
http://humansystems.arc.nasa.gov/groups/midas/publications.html 
 

4.5.3 Where Can You Get It? 
A software usage agreement with NASA Ames needs to be obtained to use the software (MIDAS 
NASA Civil Servant POC: David Foyle – David.C.Foyle@nasa.gov). The MIDAS software 
operates on the Windows NT platform and requires the freely available .net framework available 
from the Microsoft website. 

4.5.4 How Usable Is It? 
MIDAS has proven to be a flexible and useful tool for representing humans operating in a variety of 
environments. Its greatest strength lies in its ability to represent conceptual designs or candidate 
procedures in software and then allow a designer or potential user see them operated by a virtual 
crewmember in the context of a simulation of the target environment. The graphical user interface, 
timeline output, and anthropometric visualization have made MIDAS accessible to a broader range 
of potential users.  The code has been used extensively over the previous four years. However, from 
the perspective of a formal usability evaluation determination, given that the MIDAS v5 user guide 
is currently under development, it is best to consider MIDAS an internal R&D software tool. The 
software can be downloaded onto a Windows NT platform from a website.   

4.5.5 How Extensively Validated Is It? 
MIDAS has undergone extensive verification and validation efforts. Each of the component models 
of human behavior has been validated through empirical human simulation comparison. The 
component models were then computationalized (represented in algorithmic form) and verified 
within the MIDAS architecture through extensive verification exercises. The integrated architecture 
(which contains the host of validated component models) has been validated in (Gore Hooey, Socash 
et al., 2011). 
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4.6 Multiple Resource Model 

4.6.1 What Is It? 
The multiple resource model predicts the success or failure of multi-tasking in the cockpit. The 
architecture of the multiple resource model is generally built around the multiple resource theory of 
multi-task performance (Wickens, 1984; 1990; 2005; Wickens, Bagnall, Gosakan, & Walters, 2011, 
North & Riley, 1989). It is an analytic model that contains two macro elements. 
  

•  A conflict matrix that predicts the effect of competition for specific (multiple) resources 
between two time-shared tasks. 

•  A demand component that predicts the interfering effect of the difficulty of the two tasks. 
 
Each is described in turn. 
 
The conflict matrix. The multiple resource model (Wickens, 2008b) assumes that human information 
processing depends upon some or all of levels along four dichotomous dimensions, as shown in the 
table. Table 4.2. 
 
Table 4.2.  Dimensions of the multiple resource model (modalities now also includes tactile in the 
latest version) 
DIMENSION Level 1 Level 2 

Stages Perceptual-cognitive Action selection 

Codes Verbal/linguistic Spatial 

Modalities Visual Auditory 

Visual channels Focal Ambient. 

 
Note that there is some nesting within these. For example the two visual channels are nested only 
within the visual modalities, and the different modality channels are nested only within 
perception/cognition. Note also that the latest version of the multiple resource model now contains 
Tactile, as a 3rd level of Modalities (Wickens, Hollands et al., 2012) 
 
Any given task can be identified as occupying one or more cells of the matrix. For example talking 
to ATC will occupy action selection and verbal/linguistic. Thus any pair of tasks may vary in the 
extent to which they occupy the same cells or different cells. The key to computing resource 
conflict, is that two tasks will interfere with each other to the extent that they occupy more 
overlapping cells. The computation mechanism of such prediction is based on the conflict matrix 
between the tasks. To simplify, if only two resource dimensions were specified (stages and codes) 
such a conflict matrix would be shown as in Table 4.3 
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Table 4.3.  Representation of the conflict matrix in a simplified four-resource version of the multiple 
resource model. 

Task A 
 

Task B 

Perceptual-
cognitive 
spatial 

Perceptual 
cognitive verbal 

Action 
Selection - 
spatial 

Action 
Selection - 
verbal 

Perceptual –
cognitive 
spatial 

.XX .YY .ZZ .AA 

Perceptual –
cognitive verbal 

 - - - 

Action 
Selection - 
spatial 

  - - 

Action 
Selection - 
verbal 

   - 

 

Then the entries within each cell will show how much conflict there will be within a cell demanded 
by both the task labeled across the rows, and that labeled down the columns. For example if Task A 
is responding to ATC (response verbal) and Task B is examining a map for route vectors (perceptual 
- cognitive spatial) the conflict interference between them will be 0.AA. These interference values 
are fractions ranging from 1 to 1.0. Details on specific numbers can be found in Wickens, 2002a; 
2005). Thus any pair of tasks, whose resource demands are ticked off along across the top, and down 
the sides, will populate a certain number of cells within the matrix. The conflict values for those 
populated cells are summed to achieve a total resource conflict score. 
 
Total Demand score 
 
Table 4.4  now depicts the original task outline from Table 4.3, within the framework of an outer 
row and column. These explicitly label the two tasks (here map reading and target searching) and 
assign a demand vector to each: map reading is heavily perceptual/cognitive and spatial, but here 
may involve a simple voice response. Visual search (e.g., traffic search out the window) demands 
only visual perception. The total task demand is simply the sum of the demands of the two tasks, 
here 2 + [3+1] = 4. Also in this example it can be seen that the conflict score is [.XX + .AA] (the 
sum of the two populated cells). Hence the total interference is predicted to be the weighted sum of 
the demand score and the conflict score. 
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Table 4.4 The simplified four-resource model depicting the task demand vectors of the two 
competing tasks, map reading and target search. 
 Map read 3 0 0 1 
Target 

search 
 Perceptual-

cognitive 
spatial 

Perceptual 
cognitive 
verbal 

Action 
Selection - 
spatial 

Action 
Selection - 
verbal 

2 Perceptual –
cognitive 
spatial 

.XX .YY .ZZ. .AA 

0 Perceptual –
cognitive 
verbal 

 - - - 

0 Action 
Selection - 
spatial 

  - - 

0 Action 
Selection - 
verbal 

   - 

 
Note that in this computational architecture, the two components are treated independently and do 
not interact. That is, the “.XX” value in the upper left had cell, will be the same with the demand 
vectors of 2 and 3 (as shown) as it would be if these were, for example, 1 and 1 (two very easy 
perceptual tasks). Riley et al. (1991) have provided data to show that this simple non-interacting 
version is fully adequate.  
 
Within the model, the conflict values within the matrix are relatively stable and fixed within the 
model. However a task analysis is required by the model user to establish which resources are 
demanded by each task, and the degree of demand within each resource. The latter may be estimated 
by SMEs, or in some cases, may be available from table lookups, such as the McCracken and 
Aldrich scale. 
 
The depicted model is analytic, and its computation is straightforward. However two elaborations 
can be made to provide a discrete event simulation model: 
 

1. As noted in the TLAP architecture (See 4.7 below), if task times are variable, then the 
overlap between two concurrent tasks will vary according to task time distributions. Then 
multiple resource conflict and demand should only be computed during the periods when the 
two tasks overlap in time. During epochs of single task performance, multiple task 
interference will not (by definition) be occurring. 
 

2. This version of the model assumes a level of interference as computed above. But in reality, 
if a pilot is confronted with two tasks, whose demand, or resource conflict is so high that it is 
impossible to process them concurrently, then, by necessity, she must shed one or the other. 
This task shedding behavior is based on a red-line assumption which is not itself an inherent 
part of the multiple resource model, and is addressed instead in the architecture of scheduling 
models such as the scheduling module for task management within MIDAS (Gore, 2013, in 
preparation; see Section 4.5). 
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4.6.2 What Has It Been Applied To? 
Primarily to flying applications as described in 3.2; although there is one application to driving with 
in-vehicle technology (Horrey & Wickens, 2004). 

4.6.3 Where Can You Get It? 
The multiple resource model is not available as a stand-alone software package. However versions 
of this model have been incorporated into MIDAS (see 4.3 above), and into IMPRINT.  IMPRINT is 
available (upon request) to U.S. Government agencies at the following URL:  
http://www.arl.army.mil/www/default.cfm?page=445. 

4.6.4 How Usable Is It? 
Approximations to computing the two components (conflict and demand) are relatively easy to 
accomplish. Demand values can be assigned by SME’s. The demand vectors associated with each 
task can also be assigned by SME’s. Different sets of conflict values within the conflict matrix are 
available in the published literature (e.g., Wickens, Bagnall et al., 2011). 

4.6.5 How Extensively Validated Is It? 
Several flight deck validations of the computational model were described above. A single driving 
validation is described in Horrey and Wickens, (2004). Other less quantitative validations of 
multiple resource predictions in a flight deck environment have been carried out by Wickens, 
Sandry, and Vidulich (1983; military cockpit), and Wickens, Goh et al (2003; GA cockpit with 
NextGen technology). 

4.7 Optimal Control Model (OCM) & Flight Control Workload 

4.7.1 What Is It? 
The Optimal Control Model (OCM; Rikard & Levison, 1981) is actually a prototype of a more 
general class of manual control models that have been employed (and validated) to predict flight 
handling qualities (see Wickens, 1986); and the latter commodity is closely related to subjective 
workload, or more specifically psychomotor load (within a VACP context).   
   
The general architecture of OCM (Kleinman, Baron, & Levison, 1971; Levison, 1989) is to model 
three fundamental stages of pilot information processing on the flight deck. These are: 

 
1. Estimating the state of the vector of displayed variables necessary to control an axis of 

flight (e.g., vertical flight, lateral flight). An optimal Kalman filter is incorporated to do 
this estimation. 

 
2. Predicting the future level of these variables to the extent they are subject to lag, and that 

stable control depends on predicted state, rather than current state. 
 

3. Translating the estimated predicted state into a vector of control gains, applied to 
different flight controls. This gain matrix is tuned to optimize the balance between the 
need for precise control (minimizing error) and “smooth flight” (e.g., minimizing large 
rapid control movements).  

 
All three stages contain optimization components, hence the name “optimal” control. 
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Importantly, these processes are subject to, and hence modeled with: 

• Inherent lags in the human processing system (default, around 1/3 second) 
• Noise added to the estimation and control processes.  
 

The most important noise is that added to estimation and observation, (called equivalent 
observation noise) and is assumed to grow linearly as visual attention is allocated away from the 
controlled variable in question (Levison, Elkind, & Ward, 1971), This function provides an 
important mechanism for multi-task performance and workload prediction. 

4.7.2 What Has It Been Applied To? 
The model has been primarily applied to flight handling qualities, although one application has been 
to driving (Levison, 1989). 

4.7.3 Where Can You Get It? 
The model was at one time available from Bolt, Beranick, and Newman. It is not clear if it still is 
available. 

4.7.4 How Usable Is It? 
The OCM is based on the frequency domain language of linear and non-linear feedback control 
theory. Hence it is designed to work on analog computers (or digital simulation of linear dynamic 
systems in the frequency domain). As a consequence, its use requires some degree of specialized 
knowledge in control theory, generally taught within the discipline of aeronautical engineering. 

4.7.5 How Extensively Validated Is It? 
The model has been validated in a variety of applications to predict flight control performance and 
workload. The Rickard and Levison (1981) study cited is prototypical of a number of others reported 
in various proceedings of the Annual Conference of Manual Control. 

4.7.6 Extensions of OCM 
Other models of manual control within the frequency domain have also been produced and validated 
to predict flight path tracking performance and occasionally workload. Perhaps the most common of 
these is the Crossover model of McRuer and Jex (1967). We do not review this model here because 
it is not really a model of human performance, but rather, a model of the whole human-aircraft 
control system. However we do note that one important feature of this model (and other models of 
manual control), is the close correlation found between model-predicted lag of an aircraft axis, and 
measures of handling qualities (assessed by the Cooper-Harper rating scale) which we noted above, 
is a proxy for the subjective estimate of psychomotor workload. It is assumed that when there is lag 
along flight control axes, the pilot must “generate lead” (e.g, predict) in order to compensate for the 
lag and retain flight stability. Prediction is workload-demanding (Wickens, Gempler, & Morphew, 
2000) and the greater the need for prediction in flight control, the greater the workload (McRuer & 
Jex, 1967; Wickens, 1986; figure 39.31). 
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4.8 The Traffic Organization and Perturbation Analyzer (TOPAZ)  

4.8.1 What Is It? 
The Traffic Organization and Perturbation Analyzer (TOPAZ) is a multi-agent dynamic risk model 
designed to evaluate system safety within Air Traffic Management (ATM).  The system uses a 
dynamic extension of Petri nets and Monte Carlo simulations to analyze the safety of air traffic 
systems through the generation of conditional collision risks.  TOPAZ can account for both nominal 
and non-nominal events and can represent the dynamic interactions between human operators, 
technical systems and procedures. 
 
TOPAZ has been under development for a number of years.  The initial system included a 
simulation environment based on high-level petri nets.  This included support for developing petri 
net modules for human behavior, the environment and systems within the ATM environment.  
Additions have included multi-agent situational awareness modeling, support for bias and 
uncertainty assessment, and modules for accident model specification (Stroeve et al., 2009). 
 
The system supports the development of systemic accident models describing the performance of the 
system as a whole in which accidents become emergent properties of the variability within the 
system (Stroeve et al., 2009).  This quality is important for NextGen in that it supports the evaluation 
of very low frequency events, such as runway incursions, for which little accident data exists. 
 
The process of developing the model involves representing the dynamic characteristics of related 
agents, such as human operators and technical systems, within a hierarchical structure.  These model 
structures can represent: 
 

• Key aspects of agents including SA, task scheduling, flight phases, alerting systems 

• Agent modes related to human and system performance 

• Time characteristics of tasks or systems such as event distributions 

• Agent interactions such as task transitions or system availability 

• Interactions including the effects of SA on performance and the effect of system availability 

(Stroeve et al., 2009) 
 
Numerous Discrete Event Simulation Monte Carlo runs of the model then provide conditional 
probabilities of incident occurrence based on the dynamic interactions of agents and interactions 
represented.  The TOPAZ system also supports both bias and uncertainty analysis allowing the user 
to assess the relative contribution of agents and events to the overall system risk. 
 

4.8.2 What Has It Been Applied To? 
The primary use of TOPAZ has been the evaluation of collision probability within the ATM 
environment.  As mentioned in the Error (3.1) and SA (3.3) sections, the most common scenario 
evaluated has been runway incursions resulting from one taxiing aircraft erroneously crossing a 
runway in which another aircraft is on a take-off roll.  The model includes dynamic representations 
and interactions of the following agents: 
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• The motions of the take-off and taxiing aircraft through the take-off roll and approach to 
runway intersection respectively 

• The availability and dynamics of the surveillance system including relative position and 
velocities of each aircraft and the resulting alerts and alarms 

• The pilots flying the two aircraft and a range of performance dynamics such as visual 
monitoring, conflict detection and reaction 

• The runway and taxiway controllers and performance dynamics such as communication, 
conflict detection and reaction. 

• The availability and dynamics of the communications systems between the controllers and 
pilots including delays, frequency selection and the nominal state of these systems. 

 
Figure 4.3 shows the relationships between the agents. The scenario begins with the take-off roll and 
taxiing of the two aircraft (nodes E10 & E12) and ends with the probability of detection and 
avoidance or the collision.  In one analysis, a huge number of Monte Carlo runs were used to 
generate the probability of the collision event.  This included sensitivity analysis removing agents or 
varying aspects of agent behavior to assess the effects on the overall risk. 
 

 
Figure 4.3. Shows the relations events for conflict recognition and collision avoidance actions by the 

agents in the runway incursion model (from Stroeve et al., 2011). 
 
The results of the bias and uncertainty analysis show that the understanding of pilot performance is 
the strongest contributor to uncertainty in the risk results.  This result would help to direct the 
analysis team to focus data gathering and modeling efforts on ensuring the accurate understanding 
and representation of pilot performance within the model.  In addition, an analysis of the conditional 
probabilities of each event given a collision illustrates the individual contributions of each agent to 
the overall risk.  For example, overall collision risk only increases by a factor of 1.06 without an 
ATC alert system but increases by a factor of 500 if none of the agents (pilots and controllers) are 
monitoring or in the control loop (Stroeve et al., 2011). 
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4.8.3 Where Can You Get It? 
TOPAZ has been developed by and is available from the National Aerospace Laboratory NLR, Air 
Transport Safety Institute, Amsterdam, The Netherlands www.nlr.nl. 
 
More information about the model can also be obtained by contacting Henk Blom. 
(Henk.Blom@nlr-atsi.nl) 
 

4.8.4 How Usable Is It? 
TOPAZ is a complex system requiring considerable expertise and effort.  The process includes 
identification of the operation and hazards to be modeled and the development of high-level Petri 
nets for the various agent models.   
 

4.8.5 How Extensively Validated Is It? 
The studies describe a mathematical process of verification rather than validation.  Actual data with 
which to compare model outputs in a true validation are difficult to obtain for such low-probability 
events. 

4.9 Time Line Analysis Procedure (TLAP) 

4.9.1 What Is It? 
This model has a simple straightforward architecture (Parks & Boucek, 1989). A time line is laid out 
concerning when different cockpit tasks need to be performed. Each task is assigned a length, which 
may be fixed (in the analytical version) or have a variance (in a discrete event simulation version). 
Tasks may overlap in time (as flying the aircraft, while communicating with ATC). Then the total 
time of a mission is subdivided into time units (e.g., 10 seconds), and within each unit, workload is 
computed as the ratio of the total of task times within that unit, to the unit length. For example if 
there are two 5 second tasks within the 10 second unit, the workload is 10/10 = 1.0 (or 100%). 
 
Note that at this simple level, the model does not distinguish whether the two 5 second tasks are 
performed sequentially or simultaneously. A more refined version of the model adds a penalty for 
two tasks occupying the pilot at the same time (e.g., simultaneously) and this version has been found 
to be a more accurate predictor of performance breakdowns (Sarno & Wickens, 1995). 
 
The model can be converted from an analytic model (calculating ratios) to a discrete event 
simulation model, if the time required by each task has a variance associated with it, and each 
iteration picks (randomly) a time demand from the distribution for each task. The time line analysis 
procedure does not incorporate specific assumptions about the pilot response when there is 
concurrence (e.g., possible shedding or delaying the task, as in a queuing theory model), nor does it 
consider the nature of the task in question, other than its length. These issues are addressed in the 
Multiple Resource Architecture. 

4.9.2 What has it been Applied To? 
As described in section 3.2, it has been applied to many cockpit time-line procedures, with Stone et 
al. (1987) and Parks & Boucek (1989) offering prototypical examples. 
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4.9.3 Where Can You Get It? 
The original Time Line Analysis (TLA) module was part of a software tool called Crewstation 
Human Engineering Software System (CHESS), it was used for the Boeing 757/767/747-400 
certification. It has not been employed subsequently for certification, and does not currently exist 
within a commercially available software tool. 

4.9.4 How Usable is it? 
TLAP is extremely usable, and any user can follow the general guidelines presented in section 3.2.4; 
or outlined in Parks & Boucek (1989) to create his/her own analysis. 

4.9.5 How Extensively Validated is it? 
In our review, there are surprisingly few high validity (e.g., commercial flight deck) validations 
against performance data or task shedding data; given the ease of use. But see Sarno & Wickens 
(1995) for lower validity validation. 

4.10 GOMS  

4.10.1 What Is It? 
The GOMS (Goals Operators Methods, Selection rules) is an approach to task analysis that is based 
upon the keystroke level model of human information processing originally crafted by Card, Moran, 
and Newell (1983). This approach provides fundamental times for basic operations, like looking, 
item rehearsal, or reaching (as a function of distance and target width).  Following a GOMS task 
analysis, the analyst can assemble tasks so as to create a network of more complex operations, 
necessary to complete higher-level tasks, like programming an FMS (Polson, Irving, & Irving, 1994; 
John et al., 2009).  The GOMS approach has been used together with the ACT-R modeling 
architecture to create human performance models that provide predictions for both cognitive errors 
(ACT-R) and time to complete task sequences (GOMS). 
  
Gil et al., (2012, in press) have enhanced the basic GOMS tool, described in Polson and Javaux 
(2001), to create E-GOMSL (Enhanced GOMS language), an architecture that is more versatile and 
appears to be more specifically focused on cockpit tasks. E-GOMSL identifies a set of basic 
operators: [confirm, think-of, look-at, store, recall]. Each operator in turn is characterized by a set 
of four attributes: [Channel, VACP; Control object (e.g., working memory), syntax, and time (or 
time distribution)]. 
 
Considerable effort in task analysis appears to be required to assemble the operators to approximate 
the cockpit tasks; but the model will output task times as well as variables such as working memory 
load, that are important for predicting workload (Gil & Kaber, 2012). 
 
The Model, and the requirements for programming, is well described in Gil and Kaber (2012). 

4.10.2 What Has It Been Applied To? 
The GOMS approach to task analysis has been applied extensively in analyses of human-computer 
interaction.  It could potentially be used to model any detailed level of interaction in which an agent 
performs discrete action sequences. There have been some variants of GOMS applied in the aviation 
environment. These variants include the Cognitive, Performance, Motor (CPM-GOMS).  CPM 
GOMS  has focused on F22 operations as well as predicting mouse clicks for controllers 
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(Remington, Matessa, Freed, & Lee, 2003).  A more recent application of the GOMS approach that 
combines two theory-based tools (CogTool and SANLab) has been used to address human 
variability in skilled performance as applied to the Boeing 777 Flight Management Computer (FMC) 
and the Control and Display Unit (CDU) (John, Patton, Gray, & Morrison, 2012). This paper 
contains no validation data. 
4.10.3 Where Can You Get It? 
The GOMS method can be applied to any tasks that involve keystroke-level type interactions.  
Information on this method is available in a variety of sources, including: 

Kirwan, B. & Ainsworth, L.K.  (1992).  A Guide to Task Analysis.  Washington, DC:  Taylor 
and Francis. 
Card, S., Moran, T., & Newell, A. (1983). The Psychology of Human–Computer Interaction. 
Hillsdale, NJ: Erlbaum. 
http://en.wikipedia.org/wiki/GOMS 

 

4.10.3 How Usable Is It? 
GOMS is a potentially time-consuming method for analyzing task sequences, but it can provide 
useful insights for detailed task sequences.  The only usability concerns are related to learning the 
method itself; there is no particular software that the analyst needs to learn or use.   
 

4.10.4 How Extensively Validated Is It? 
GOMS has been in use for 3 decades (as of the date this report was produced) and numerous 
validations have been conducted using the method (e.g., Gray, John & Atwood, 1993).  
  

5. DISCUSSION and CONCLUSIONS 

5.1 Validation Efforts 
In evaluating the overall success of the aviation modeling community in generating valid pilot 
performance models, our findings were somewhat disappointing. In Table 2.4 (see Section 2.2.4), 
we reported an overall validation rate (across all model aspects) of 36%; and many of the higher 
values contributing to that overall percentage were aspects not reviewed in our deep dives (e.g., pilot 
vision models, manual control). Of the six deep dive areas, where we paid close attention to the 
quality of validation, the percentage was smaller, as shown in Table 5.1, which breaks down 
validation by whether or not it contained a quantitative aspect. 
 
Table 5.1 Validation statistics for deep dive aspects 
Model aspect All validations Included Quantitative 

aspects 
Error 9/17 0/17 
Workload/multi-task 14/33 11/33 
Situation awareness 3/15 1/15 
Pilot-automation interaction 8/16 3/16 
Roles & responsibilities 3/12 2/12 
TOTAL 37/93= 40% 17/93 = 18% 
 



 

 
 
 

97 

Several reasons can be offered to account for this state of affairs. First, and of relatively minor 
importance, the statistics reported could be adjusted upward or downward slightly depending on how 
validation is defined and classified for each model effort. For example some of what we said was 
qualitative validation (and hence counted in the left column but not the right) might be argued to be 
quantitative (e.g., if some numerical data were provided from a PITL simulation, but it was 
challenging to translate these 1-for-1 into the model predictions, e.g., workload was assessed by 
NASA TLX in an empirical study, yet calculated as VACP scores in the model).  
 
Furthermore, some very good model verification, (and we emphasize that a much higher percentage 
the model architectures reviewed were verified, as shown in Table 3.6.1) could be argued by some 
observers to be a form of qualitative validation (hence boosting the numbers in the left column of 
Table 5.1). But at the same time, we might have classified a model as having a qualitative validation, 
and other observers would challenge this as being a verification, given the fuzziness of the 
boundaries between these two concepts. Nevertheless we would argue that the precise values of the 
statistics reported are less important than their approximate level; which indicates that well less than 
half of the model efforts received validation, and less than half of those received the sort of precise 
numerical quantitative validation that can both “sell” the model as being accurate (if the correlation 
is high) and provide precise guidance for model modification, if the correlation is lower. We do 
observe however in Table 4.1, that all the major architectures have received considerable validation. 
On this basis, many of the predictions from such architecture made in model efforts that have not yet 
been validated, are still extremely useful because the prior validation of the architecture, provides 
confidence in the accuracy of the predictions. 
 
To elaborate on the concern about the state of validation, we note that the numerators of several of 
these statistics in Table 5.1 are heavily populated by studies involving non-transport aircraft and/or 
non-transport pilots as apparatus or subjects.  And even of those studies that used professional pilots 
as participants, using aircraft simulations representing modern commercial carriers, only a small 
handful directly examined NextGen issues to test their models predictions. 
 
We offer four non-mutually exclusive reasons for the state of affairs regarding validation. 
 
First, finances for the researcher/modeler are often limited. Most models are developed under 
contract; and the time and effort to accomplish the full validation at the end of the contract are often 
underestimated, following the well-known planning fallacy (Buehler, Griffin, & Ross, 2002). 
Funding runs out before complete validation can be accomplished. Furthermore we have noted that 
in at least two cases, a model was developed in phase 1 of a 3-phase SBIR, and subsequent phases 
(in which validation was planned) were not funded. 
 
Similarly, along the lines of “limited funding,” models provide the opportunity to collect a 
tremendous variety of data regarding predicted pilot performance.  Empirical validation analyses, 
due to time or resource constraints, sometimes focus on a limited set of the data.  Thus sometimes 
the validation is carried out on only a small sampling of the total data set, such as one set of 
subjective ratings or one aspect of visual scanning. 
 
Second, validation is cumbersome; particularly in high fidelity PITL simulations. Pilots and 
simulator time are hard to obtain. Furthermore even when simulations are accomplished, certain 
kinds of data are hard to quantify, such as “a pattern of errors” (see Section 3.1), or a particular 
sequence of procedural steps. Also careful experimental design is necessary to create the different 
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experimental conditions necessary to accomplish true validation. That is, is the model sensitive to 
changes in flight procedures or equipment in the same way that pilots are. It is only by comparing 
model-predicted and pilot-predicted differences or changes that these critical correlational measures 
of validation can be obtained. 
 
Third, some validation studies appear to report narrowly focused, promising results rather than a 
complete set of results.  The more comprehensive pilot models (e.g., those created using MIDAS, 
CASCaS, or ACT-R) can predict many aspects of pilot behavior (e.g., errors, workload, situation 
awareness), yet several of the validation results provided only data on highly specific issues (e.g., 
visual workload, errors in selecting a particular page of data).  This suggests that the researchers 
might be reporting only those that indicate good agreement with the model.  Alternatively, it might 
indicate a bias in the literature, where “uninteresting” results (e.g., of a low correlation prediction) 
are typically not published.      
 
Finally, sometimes numbers may be available from the PITL data, but for reasons that are unclear to 
the authors of this report, were not converted to appropriate statistics. In this regard we wish to 
reiterate that the most appropriate statistics are measures of the shared variance accounted for by 
model and PITL simulation results, where this variance is across-conditions that are meaningful to 
the FAA (e.g., old vs. new procedures, performance with and without NextGen technology or the 4-
way combination of these two). This shared variance is of course represented by the correlation, 
with N defining the number of conditions compared (see 2.2.3 and Appendix A). 
 
However in this regard we also want to emphasize a point made in Section 2.2, that it is the raw 
value of the correlation (from 0 to 1.0) that is important, not necessarily its statistical significance. 
This is of course because the latter is influenced by a sample size, and if only 3 or 4 conditions are 
available for model validation, imposing constraints on statistical significance on a 4-point 
correlation is an impossibly high bar. Indeed even when only two conditions are available (e.g., 
conventional vs. NextGen cockpit), and hence a correlation is meaningless, useful quantitative 
validation can be achieved by comparing the percent difference observed in pilot performance (e.g., 
a 30% reduction in errors) with that predicted by the model. This corresponds to the slope of a 
regression line, which will be closer to 1.0 as the model is more valid. 
 

5.2. Status of Flight Deck Models 
Notwithstanding the limitations of the validation efforts, our team has identified an impressive array 
of models that either are, or could be tailored to address, issues in NextGen. These models were 
defined by those “aspects” of pilot performance that they predict, and these aspects could in turn be 
sorted into three different categories, ordered perhaps from least to most relevant. 
 
First, there were aspects such as spatial disorientation, decision making and manual control that are 
relevant to all aspects of aviation, and for which there was not time nor resources to pursue in depth. 
It was decided during our mid-contract meeting with FAA sponsors that these would need to await 
further study because of our own limited resources.  
 
Second, there were two particular model aspects that we did not initially intend to deep dive, but as 
we proceeded into the second half of our contract effort we realized were of great relevance to the 
six aspects that we were pursuing in depth. These were procedures and vision (particularly visual 
attention). Indeed both of these were partially reviewed in the deep dive effort of Section 3, because 
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of their high degree of relevance: for example procedural models, such as GOMS are often relevant 
to activities like programming an FMS, covered in our PAI aspect. Correspondingly, models of 
visual attention are sometimes a necessary component of situation awareness and automation (PAI) 
modeling. We believe that these two areas should receive high priority for future evaluation and 
model development. We also note that vision models in particular were identified early on in our 
project to have benefitted from a good deal of validation efforts (63% in Table 2.4), and some of this 
validation was in fact reported in Section 3. 
 
Third of course, are the six model aspects that did receive our deep dive analysis (there were five 
categories in Section 3, because workload and multi-tasking were combined into one section). After 
considering these models in some depth, it is our conclusion that, ideally, and at this point in the 
development of NextGen, they should not be pursued in isolation but rather that architectures should 
combine aspects in a manner similar to that typified by, for example CASCaS, MIDAS and TOPAZ. 
Such combination is warranted because the pilots’ responsibilities in NextGen are complex and, 
themselves, integrate these aspects. Several examples abound: 
 

• The pilot using automation (PAI aspect) must maintain situation awareness of automation 
state often through visual attention 

• The pilot’s task of programming the procedures of complex automation (PAI) imposes 
heavy workload 

• Different assignment of roles and responsibilities can substantially influence multi-tasking 
requirements, as well as impose and/or influence communications load. 

 
Each of these three examples link three aspect areas, and for their impact to be predicted, the 
relevant model should, ideally, incorporate the set of relevant aspects. 
 
Of course with the increasing complexity of multi-aspect models comes the danger of decreased 
usability for teams and individuals other than the model developer; although it was not our goal in 
the current effort to “score” models along such a usability scale. Still, we would argue that 
developers of complex models be sensitive to these issues, and perhaps consider a modular “plug in” 
concept, whereby a given model aspect, perhaps vital to answer some modeling questions, can have 
a “default’ (and simplified) representation if that aspect is not critical for a particular application. For 
example a model might have a simplified representation of workload, not requiring channel and 
resource assignment that could be employed when workload questions are not critical; but could be 
replaced by a more sophisticated workload model when they are critical 
 

5.3. Final Conclusions 
The following list summarizes our main conclusions from this review and analysis: 
 

• There are many modeling architectures available for predicting pilot performance. 

• Numerous efforts have been conducted to predict pilot performance. 

• There appears to exist a direct relationship between breadth and complexity of modeling 
efforts (a model that predicts many aspects of pilot performance will probably require 
extensive modeling expertise). 
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• Validation efforts are currently insufficient, particularly in model aspects of communications, 
procedures, and roles & responsibilities, all of which have less than around 25% validation 
rates. 

• Validation efforts should be accompanied by explicit correlation measures, and such 
measures accompanied by the raw data scatter plots from which they are derived. In this way 
readers and researchers can inspect the particular conditions (model predictors) that may be 
“outliers”, either under- or over-predicted by the model. 

• Verification efforts differ in the extent to which they have been implemented. 

• There is a need for clear standards in terms of how models are verified and validated. 

• Development of models that address multiple aspects in combination should be encouraged. 

• There is a need for more funding for model verification and, especially, validation efforts. 
 
Based on these findings, we recommend the following components for a “highly rated modeling 
effort”:  that it include an empirical validation component, that it be scoped appropriately (focused if 
possible), and that it use an appropriate “tool for the task”:  one of the broader modeling 
architectures if it is attempting to model a diverse range of behaviors (e.g., MIDAS, CASCaS, 
TOPAZ);  a cognitive model for addressing cognitive issues (e.g., ACT-R), that it be reasonably 
well validated. Such an effort should include a clear specification of different NextGen procedures 
or technologies; and every effort should be made to maintain features of the PITL simulation 
identical to the conditions of the model simulation. Correlation data should be reported in scatter 
plot form 

We would like to conclude that modeling efforts contribute significantly to improving aviation 
safety, by providing a viable and useful test bed for evaluating design decisions well before 
implementation.  Modeling efforts provide insights into human cognition and behavior, and offer 
useful input to system designers  
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Appendix A:  CSERIAC Report Excerpt   
This material is a modified version of Chapter 1 of Wickens et al, 1997. 
1. Why Model?   
1.1 Early Design Decisions 
It is well established that implementing design changes in a system once it has gone into production 
is very difficult, because of the high cost involved. Thus, human factors deficiencies in a system that 
are revealed through product evaluation are often discovered too late to be corrected (Elkind, Card, 
Hochberg, & Huey, 1990). Human factors input to the design process must be provided early in the 
design cycle, before extensive production setup costs are incurred. But, in the absence of an existing 
system or prototype configured with a human in the loop to evaluate the design, where should such 
input originate? A strong case can be made for using computer-based models to "compute" the 
efficiency of proposed designs from a human factors standpoint (Corker & Smith, 1993). While such 
models may not be likely to indicate the "best" design, they should be able to raise a red flag by 
revealing important human factors deficiencies when they are run using a representation of the 
proposed design as model input. The sorts of human factors deficiencies that directly concern us 
here are, of course, deficiencies in the layout of information appearing on a display, and, when 
appropriate, the physical placement of displays and associated controls. 
 
1.2 Conflicting Principles 
As those working in the design community will testify, it is rare that a given display arrangement 
satisfies all human factors layout principles simultaneously. For example, moving one frequently 
used display close to another frequently used display may mean placing it farther away from a 
display to which it is related. Placing related displays close together may create problems if they are 
placed so close together that the layout becomes cluttered. When two (or more) principles conflict, 
which one should be followed? Is the best solution a compromise that violates both principles to 
some extent? A validated model can incorporate answers to such questions and guide the display 
layout process. A model that takes account of the various principles and provides weights 
characterizing their relative importance can provide a number that expresses the added benefit of 
adhering to (or cost of violating) a combination of principles for a given proposed design. Then, the 
optimal design (or best compromise) can be predicted.  

 
For example, if adhering to principle A (e.g., moving a display closer to another display used in 
sequence) is twice as important (leads to twice the predicted performance gain) as adhering to 
principle B (e.g., moving the display closer to a functionally related control), then there is solid 
justification for choosing a design solution that conforms to A but violates B, even if cost or 
engineering factors may slightly favor B. In the absence of such models, the designer is left in a state 
of frustration when a list of sometimes conflicting principles is offered, but no guidance is given on 
how to resolve these conflicts except by doing further costly experiments. In such instances, it is 
understandable that the designer will simply choose to satisfy the principles that can be applied most 
economically. The availability of models should help to address this situation.  
 
1.3 Figure of Merit 
A third reason why computational models are important is that they make it possible to assess the 
degree to which a display layout adheres to human factors principles by providing the designer with 
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a predicted figure of merit for a given display layout. When there is a computational algorithm for 
measuring the strength of adherence to (or violation of) each principle in isolation, then the overall 
"goodness" of a display layout can be assessed by properly combining these assessments of 
adherence to each principle. This combination should, of course, weight the degree of adherence to a 
given principle by the degree of importance of that principle to system performance. In this way, 
different display layouts can be compared and evaluated before manufacturing begins to determine 
which one is the "best." Or, alternatively, the impact of a particular design decision (e.g., to 
reposition a display to a side panel) can be evaluated and its cost or benefit expressed in quantitative 
terms. Such quantitative comparative data should be useful in trading off human factors constraints 
against other engineering design or cost constraints. As we have noted, it is particularly valuable to 
have these data in advance of the actual manufacturing process (i.e., before "metal is bent"), because 
of the incredibly high cost of making adjustments in design later to accommodate human factors 
concerns that were revealed only after production had begun (Elkind et al., 1990).  

 
2. Computational Models and Measures:  Properties and Criteria  

 
By a computational model, we mean here a tool that "computes," from inputs of parameters that 
reflect characteristics of a pilot-task-interface description, some numerical index of the quality of 
performance of the pilot-aircraft system. Such computation is typically (but need not be) done on a 
computer, in that certain models can predict outputs via a simple algebraic formula (Elkind et al., 
1990). A high figure of merit based on a validated model predicts relatively good performance in 
terms of accuracy and/or speed &/or workload &/or situation awareness. At a minimum, the model 
should make ordinal predictions (A is better than B is better than C). Preferably, it should be able to 
make interval- or ratio-scale predictions of how much better A is than B.  

 
Many models are based upon measures of two sorts. There are measures that may define the input to 
a model, such as the complexity of a particular flight deck operation, or the computed salience of an 
alert. There are also measures of the model output, performance, workload and/or situation 
awareness, and these measures, to be useful in model validation, must often be operationalized in 
particular procedures (e.g, NASA TLX measures of workload; relational complexity as a measure of 
cognitive complexity. A measure does not become a model, however, until it is incorporated into a 
quantitative expression that predicts the direction and approximate magnitude of the effects on 
performance.  
 
There are a number of important criteria by which the value of a model or measure can be judged. 
The following sections describe the four most important of these criteria: validation, complexity, 
practical significance, and a priori specification. A fifth criterion, usability, is also mentioned, but 
it is more difficult to apply to the models reviewed in this report.  

 
2.1 Validation  
Validating a computational model or measure is very similar in many respects to validating a test. 
The goal of test validation is to determine if the score earned by an individual on the test correlates 
with or predicts some criterion score measured under other, usually more "operational," 
circumstances (Anastasi, 1988; Allen & Yen, 1979). For a pilot performance model we ask whether 
the score (level of performance) predicted for a particular pilot-task-interface combination correlates 
with the level of performance measured under operational conditions. Do pilots actually perform 
better in the conditions that are predicted to be better? Do pilots make the same kinds of errors that 
are predicted? 
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While we will see that few pilot performance models have been validated in real-world conditions, 
many have not even been validated against human performance at all.  This fact is not meant to be a 
criticism of their developers; rather, it should serve as a caution to potential users to seek validation 
of the and also to evaluate the quality of whatever validation has been done. In the paragraphs 
below, we outline some of the factors that should be considered in assessing the quality of empirical 
validation.  
 
To provide some concrete context for this discussion, suppose a model is developed to predict the 
optimal layout of cockpit instruments for aircraft flight (Andre & Wickens, 1991). Eight possible 
layouts are constructed, and the model incorporates parameters that characterize each layout in order 
to predict a level of performance for each. Pilots then perform a flight task with each layout, a 
performance score is derived, and a correlation is used to evaluate the extent to which the model 
predictions for each layout match with the obtained data (Figure 1a). The higher the correlation, the 
better the model and the more successful is the validation. That is, if a model has had its predictions 
matched against performance, we can say it has been validated. To the extent that the correlation 
returned by such matching is high, we can say that the validation is successful. There are four 
critical elements involved in creating this correlation and using it to demonstrate model validation: 
the criterion, the operator sample, the condition sample, and the statistics. We discuss each of these 
below, to show how their characteristics can influence the validity of the model. 
 

 
Figure 1.  Correlation in model validation. 

2.1.1  The Criterion. The criterion variable is the variable that is measured on the y-axis of Figure 
la. In the Andre & Wickens example, it is a measure of how good a job the display layout does in 
supporting performance of the task. But what does "good" mean? Ideally, the variable used should 
be some measure of performance evaluated against objective criteria. In our example, this might 
include reduced flight path deviation or more rapid and accurate hazard detection. These criterion 
variables are preferred over operator opinion, simply because in so many circumstances, what users 
say about an interface does not necessarily agree with how they perform using the interface (Andre 
& Wickens, 1995).  
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Ideally, the criterion variable should also be measured in more operational circumstances. We argue 
that, all other things being equal, measurement in the aircraft is more valid than measurement in the 
simulator, and measurement in the simulator is more valid than measurement in the basic laboratory 
setting. But these suggestions do not mean that laboratory studies, or those that have used operator 
opinion to solicit data on the ordinate of Figure 1a, are "invalid." Our argument is simply that they 
will be less robust than simulator-based and/or real-world measures, all other factors being equal. 
These "other factors," which are sometimes traded off in favor of more basic laboratory validation, 
are related to the sample, as discussed next.  
 
The Sample. Each correlation is based upon a set of data points or cases (e.g., the points in Figure 
1a, which is called the sample). The measure of validation is based in part on the identity of those 
cases. Generally, the greater the degree to which the people whose performance is evaluated are 
typical of the real world users of the system, the greater the generalizability to the actual applied 
setting. Hence, testing pilots would provide a more meaningful evaluation of a model of cockpit 
display layout than testing non-pilots.  
 
One reason that validation studies sometimes fail to employ typical system users (experts) is the lack 
of availability of those experts, which may make it difficult to obtain a sufficient sample size. When 
sample size is small, a correlation can appear to be very high, yet not be statistically reliable, in the 
sense that it may not be replicated in future studies. Validation studies should seek a large sample, 
and reports of these studies should always indicate the sample size. Note that if the users are in 
scarce supply and the real world conditions are expensive to create, it is the need for large samples 
that sometimes leads model validation efforts away from using typical users and real world 
conditions.  
 
As noted, the sample is made up of cases. The reported correlation will differ depending on whether 
those cases, the individual data points in Figure 1a, each represent data that are (a) the average over 
subjects of performance in each of several test conditions, (b) the individual measure of each subject 
in each condition, or (c) the average for each subject over several test conditions. Since models are 
typically developed to predict the effect of different conditions, rather than differences among users, 
the third option is not appropriate, and is rarely used. The choice between the first two options 
however is not trivial, however, and which method is used should be clearly reported when 
correlations are presented.  
 
To illustrate the consequences of this choice, Figure 2 shows validation of a model on four test 
conditions (A-D) with three subjects (1-3). The raw data points used to compute correlations can 
represent either the means for the different conditions (averaged over subjects, Figure 2a), the means 
for the different subjects (averaged over conditions, Figure 2c), or a heterogeneous mixture of the 
means for each subject and condition (center panel, Figure 2b).  
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Figure 2.  Results of validation study testing three subjects (1-3) under four conditions (A-D).  (a) 

Illustrates a positive correlation between model prediction and obtained data for the four conditions 
(averaged over subjects). (b) Shows a 0 correlation when variance between subjects is combined 

with variance between conditions. (c) Shows a negative correlation when data for each subject are 
averaged over conditions. 

 
As the figure illustrates, each technique can yield a quite different correlation between predicted and 
obtained scores. Nevertheless, model validation studies are not always explicit about which form of 
correlation is used. We suggest that the first technique is of greatest value in model validation 
because it removes variance accounted for by individual differences among subjects, which the 
model is generally not intended to predict. A plausible alternative is to compute the correlation 
between model prediction and performance for each subject individually (e.g., correlation 
underlying the 4 points on each line in Figure 2b) and then report the average correlation across 
subjects (See Wickens, McCarley, Alexander, Thomas, Ambinder, & Zheng, 2008 for an example). 
In many respects this approach is optimal because it both shows how well the model fits individual 
pilot data, as well as the data of the “mean pilot”.  
 
2.1.2  The Conditions. Model validation requires the construction of a set of conditions, like the 
eight display layouts described above, that vary along some parameter(s) incorporated in the model. 
It is important that the range of the parameters be appropriate., neither two wide nor too narrow. 
Validation efforts may sometimes fall short by creating too little variance between the conditions, 
relative to the power of the model. For example, if one parameter in the model relates to mean 
display separation, and the validation study used four separations varying in increments of only 0.5 
cm, the model might predict little variance in performance. With little variance predicted, a 
correlation with performance cannot be expected to rise very high, and the validation effort is 
doomed to failure.  
 
At the other extreme, it is easy to select two or three cases to evaluate that differ by such obvious 
and excessive magnitudes that variance in performance between them is virtually guaranteed. To 
take our previous example, we might select display separation differences of 1, 10, and 100 cm. In 
this case, the differences in visual scanning requirements are large enough to guarantee substantial 
performance differences (probably lower performance with the wide separation). In this regard, it 
should also be noted that a single "outlier" point in the appropriate corner of a scatter plot can 
greatly inflate (Figure 3a) or deflate (Figure 3b) the value of a correlation, particularly if the sample 
is small, and hence make it appear that the model is doing a much better (or worse) job of predicting 
performance than it really is. This is illustrated in Figure 3. In 3a, the model appears to have no 
predictability across the four conditions at the lower left, yet because of the single outlier, the 



 

 
 
 

116 

correlation will be high. In Figure 3, the model does a very good job predicting variance in 
performance across the four conditions in the lower right, but because of the outlier, the correlation 
would be very low, and perhaps negative. 
 
The above concerns can be addressed by carefully selecting the parameter values to span the range 
to be considered by the model (or to be realistically incorporated in actual system design), and, 
ideally, by presenting the raw scatter plot from which the correlations are derived and carefully 
labeling or identifying any "outlier" conditions that might predict one extreme reading.  Correlations 
should be reported both with and without the outlier, and a clear discussion is needed as to the 
possible reasons for its removal. That is, what unique properties of the condition in question might 
have caused its displacement from the rest of the data points. 
 

 
Figure 3. Four examples of model prediction (X axis) vs. obtained performance (Y axis). (See text 

for a description. The correlation values shown in the figures are not precisely accurate, but are 
illustrative) 

 
2.1.3  The Statistics. Within the context of a model, the correlation coefficient is a statistic that is 
often used to characterize the relationship between predicted and obtained scores. The Spearman 
product moment correlation is the statistic typically used, but rank-order correlations are also 
sometimes appropriate (particularly when extreme values, as discussed above, may inflate the 
Spearman value).  
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Three aspects of the correlation are important to validate a model across conditions: its value (from -
1.0 to 0 to +1.0) and its significance (based jointly on its value and the sample size, N, or the number 
of points in the scatter plot), and N. In classical statistics, most weight is given to significance. But 
in model validation, equal concern should be given to the value of r. This is illustrated in figure 3c 
and d. In figure3c the model does a beautiful job of predicting performance, but the high correlation  
(0.95) may not reach “significance” simply because of the small N. In figure 3d the model is not 
very good at predicting performance, the correlation is low but it may be significant because of the 
much larger value of N. Hence authors should always report both the correlation value and its 
significance and N. 
 
A special case in the statistics of model validation, which is important because of its prominence in 
many of the models discussed in this report, concerns linear regression models, in which the 
parameters for the model are themselves derived from empirical data. In a typical linear regression 
approach, the eight display layouts in our experiment might each be characterized by their 
quantitative level along each of three display variables captured by a model parameter (e.g., average 
separation, degree of clustering by relatedness, degree of importance). After the dependent variable 
(e.g., a performance measure) is assessed, linear regression will provide weights dictating the 
relative importance of each of the three parameters in accounting for variance across the criterion 
measure (M), such that:  
 

M=aA+bB+cC  
 
where A, B, and C are the levels of each of the three parameters; and a, b, and c are the weights of 
each parameter in the equation.  
 
A well-known characteristic of multiple regression models is that they tend to provide an overly 
optimistic picture of how well the parameters do in predicting the model dependent variable, 
because these predictions will capitalize on, and be able to account for, chance or random variation 
in the criterion measure. This problem can be dealt with in three ways. First, there are objective 
techniques of "correction for shrinkage" (Tatsuoka, 1971) that reduce the stated estimate of the 
predicted variance accounted for. Second, and more preferable, is cross-validation. In one form of 
cross-validation, the regression weights are derived on one sample (of conditions, subjects, or both), 
and then applied to a different sample to determine how well the data of the latter sample are 
predicted. The latter is then used as the reported validation measure. In another form of cross-
validation, the validation experiment is simply repeated. Finally, the third defense against the 
problem, which is compatible with either of the first two, is to restrict the parameters in a marketed 
model to those that "make sense" in terms of a conceptual model of human information processing. 
That is, a parameter might describe a component like working memory load or the breadth of 
attention that has an independently validated role in human psychology. 
 
All three of these corrective procedures tend to reduce the amount of "significant variance" 
accounted for by a model and hence, in a way, make the model appear less effective. For this reason, 
and because of the added complexity of carrying out the first two defenses, many developers of 
multiple regression models may be reluctant to apply the procedures. But potential model users 
should be aware of these possible constraints on the validity of regression-based models.  
 
2.1.4  Qualitative Validation. Finally, we note a form of validation in qualitative rather than 
quantitative form. Here the model predicts some pattern of effects, or distribution of error types, or a 
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particular error occurring in a particular circumstance. There is no number describing the level of 
successful prediction, but only data presented that suggest a matching pattern. 
 
3. Complexity  

 
Complexity is a second feature that characterizes the potential value of a model to the user. This 
feature distinguishes single parameter from multi-parameter models.  
 
Single parameter models may do a precise job of predicting the effect of a given variable (e.g., 
spatial separation, location in the visual field) on display processing, but they are less than fully 
satisfactory for use in design. The reason is that they fail to address how the impact of the given 
parameter will be influenced by other environmental or task characteristics that may vary in real-
world conditions. The influence of one model parameter on performance may be greatly affected by 
(i.e., interact with) another parameter. For example, changes in the spatial separation between two 
displays will have a very different impact when the displays are related to the same task than when 
they are not. Hence, it is desirable that models not only recognize the need to address multiple 
(pertinent) predictive variables but also to include higher-order terms to examine and account for the 
impact of their potential interactions. 

 
4. Practical Significance of Effects  

 
The value of a model or measure to the user also depends on whether the predictions of the model 
(or the effects due to the characteristic measured) are on a scale that makes a difference in practice. 
In operational circumstances, time differences of seconds, or sometimes as short as tenths of a 
second, are generally of practical importance. In contrast, differences on the order of milliseconds 
rarely have operational relevance in any sense other than a theoretical one, even though under 
careful laboratory control small differences may take on a high degree of statistical significance. The 
magnitude of time difference that is important is, to some extent, context dependent, however. For 
models predicting the time to perform highly predictable and repetitive operations like key strokes 
(Card, Moran, & Newell, 1986) differences of tenths or even hundredths of a second can be 
meaningful.  
 
In general, then, the greater the magnitude of the typical time effects predicted by the model, the 
greater the value of the model in terms of its practical significance. Models that predict errors also 
score highly on the practical significance criterion.  
 
Note that many validated effects in the millisecond range as demonstrated in the controlled 
laboratory may indeed turn out to have important design implications. But the robustness of these 
effects in more complex, less controlled environments should be assessed before certifying them as 
important components of display layout models. Many theoretically important models of visual 
attention processes have been intentionally excluded from consideration in this report because their 
practical significance has been deemed low.  

 
5. A Priori Specification  

 
This criterion assesses the degree to which the user of the model or measure can specify model 
parameters or compute the measure without collecting any new data. For example, some models 
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require that frequency-of-use estimates for different display components or transition probabilities 
between displays be obtained before computation of layout design measures can begin (e.g., Freund 
& Sadosky, 1967; Wierwille, 1981). This feature makes the models more difficult to use. Models 
and measures that require only information about the physical characteristics of a display are easier 
to apply than models and measures that require specification of aspects of the task or display 
content. Models that require formal experiments or observational studies to obtain values for model 
parameters are of limited usefulness to many designers. 

 
6. Usability  

 
One final criterion that should not be overlooked is the usability of the model or measure for the 
designer to whom it is recommended. Rouse and Cody (1989) note that designers' use of data 
sources is heavily dependent on the ease of using those sources. Hence, a well validated model that 
incorporates many variables, predicts significant performance differences, and requires no data 
collection to implement may nevertheless be neglected because its features simply make it too 
difficult for the non-expert to use. Ironically, sometimes the model builder's quest for high validity 
and explanatory power can make the model so complex (i.e., with too many parameters that must be 
specified) that it will remain unused. Other features affect usability as well, however. Good human 
factors at the computer interface, well-written instruction manuals, understanding of the model user's 
domain, and compatibility with readily available hardware are all examples. While we consider the 
usability criterion to be critical, it is difficult to apply to most of the models reviewed here, since 
they are not sufficiently mature for formal computer-based software and user interfaces to have been 
developed. 
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Modeling Effort 
Model or 
Architecture 

Deep dive in 
which it was 
evaluated 

Verification Validation 

   
1 2 3 4 5 6 7 8 

Blom, Corker, Stroeve & van der Park 
(2003) 

Air MIDAS E X        

Boehm-Davis, Holt, Chong & 
Hansberger (2004) 

ACT-R R&R    X     

Boehm-Davis, Holt, Diez & Hansberger 
(2002) 

ACT-R A, SA     X    

Burdick & Schively (2000) / Shively, 
Brickner & Silbiger (1997)  

MIDAS SA        X 

Byrne, Kirlik & Fleetwood (2008) ACT-R E     X    
Carlin, Alexander & Schurr (2011) ALARMS A X        
Corker & Pisanich (1998) Air MIDAS R&R     X    
Corker, Muraoka, Verma, Jadhav & 
Gore (2008) 

Air MIDAS E     X    

Deutsch & Pew (2004) D-OMAR A     X    
Deutsch & Pew (2008) D-OMAR E, WL, MT     X    
Donnelly, Noyes & Johnson (1997)   IDM SA X        
Fotta, Nicholson & Byrne (2007) ACT-R E X        
Gil, Kaber, Kim, Kaufmann, Veil & 
Picciano (2009) 

E-GOMSL A, WL        X 

Gonzales-Calleros, Vanderdonckt, 
Lüdtke & Osterloh (2010) 

Usability 
Advisor 

A --        

Gore & Corker (2000a) Air MIDAS WL   X      
Gore & Corker (2000b) Air MIDAS WL   X      
Gore (2008) MIDAS WL --        
Gore, Hooey, Mahlstedt & Foyle (2013)  MIDAS R&R    X     
Gore, Hooey, Haan, Bakowski & 
Mahlsted (2011) 

MIDAS WL MT        X 
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Deep dive in 
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Verification Validation 

   
1 2 3 4 5 6 7 8 

Gore, Hooey, Socash, Haan, Mahlsted, 
Bakowski, Gacy, Wickens, Gosakan & 
Foyle (2011) 

MIDAS WL        X 

Hooey, Gore, Wickens, Salud, Scott-
Nash, Socash & Foyle (2010)   

MIDAS SA, R&R    X     

John, Blackmon, Polson, Fennell & Teo 
(2009) 

ACT-R A    X     

Karikawa, Takahashi, Ishibashi, 
Wakabayashi & Kitamura (2006) 

PCS E, SA     X    

Keller, Lebiere & Shay (2004)  ACT-R SA   X      
Laudeman & Palmer (1995) TLAP WL, MT        X 
Lebiere, Archer, Best & Schunk (2008) ACT-R E, WL     X    
Lüdtke & Osterloh (2010) CASCaS A     X    
Lüdtke, Osterloh & Frische (2012) CASCaS A       X  
Lüdtke, Osterloh, Mioch, Rister & 
Looije (2009) 

CASCaS E, A     X    

Lyall & Cooper (1992) MRT R&R, WL, MT  X       
Manton & Hughes (1990) MRT A, WL    X     
McNally (2005) / Zacharias, Miao et al 
(1996)   

SOAR SA  X       

Miller (1998) MRT WL  X       
Miller (2001) ASHRAM E --        
Muraoka & Tsuda (2006) OPSAMS WL X        
Nikolic & Sarter (2003) (ASRS data) E        X 
Parks & Bouceck (1989) TLAP WL        X 
Pisanich & Corker (1995) Air MIDAS A, R&R     X    
Polson & Javaux (2001) GOMS A, MT  X       
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Architecture 

Deep dive in 
which it was 
evaluated 

Verification Validation 

   
1 2 3 4 5 6 7 8 

Raeth & Reising (1997) (trust / 
workload 
allocation) 

A  X       

Rickard & Levison (1981) OCM WL        X 
Riley, Lyall, Cooper & Wiener (1991)  MRT MT, WL        X 
Salmon, Stanton, Young, Harris, 
Demagalski, Marshall, Waldman & 
Dekker (2002) 

SHERPA E     X    

Salmon, Stanton, Young, Harris, 
Demagalski, Marshall, Waldman & 
Dekker (2003) 

SHERPA E     X    

Sarno & Wickens (1995) MRT WL      X   
Schoelles & Gray (2011) ACT-R MT  X       
Schoppek & Boehm-Davis (2004) ACT-R A, MT     X    
Schurr (2011) ALARMS WL X        
Sebok, Wickens, Sarter, Quesada, 
Socash & Anthony (2012) 

SEEV, 
N-SEEV, 
ADAT 

A, WL        X 

See & Vidulich (1998) Microsaint SA, WL       X  
Stanton, Salmon, Harris, Demagalski, 
Marshall, Waldman & Dekker (2003) 

SHERPA E     X    

Steelman-Allen, McCarley & Wickens 
(2011) 

N-SEEV WL        X 

Stone, Culick & Gabriel (1987)   TLAP R&R, WL    X     
Stroeve & Blom (2005) TOPAZ E  X       
Stroeve, Blom & Bakker (2009) TOPAZ E, SA, R&R   X      
Stroeve, Blom & Bakker (2011)   TOPAZ E, SA   X      
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Svensson & Wilson (2002)   (regression) SA     X    
Tidhar, Heinze & Selvestrel (1998) SWARMM R&R X        
Uijtde Haag, Duan, Schnell, Cover, 
Anderson, Snow, Etherton, Rademaker 
& Theunissen (2011) 

SOAR A --        

Walden & Rouse (1978) (queueing) MT     X    
Wickens, Bagnall, Gosakan & Walters 
(2011) 

N-SEEV MT  X       

Wickens, Goh, Helleberg, Horrey & 
Talleur (2003) 

SEEV MT, SA       X  

Wickens, Harwood, Segal, Tkalcevic & 
Sherman (1988) 

TLAP, 
MRT 

MT, WL       X  

Wickens, Hooey, Gore, Sebok & 
Koenecke (2009) 

N-SEEV SA       X  

Wickens, Larish & Contoror (1989) TLAP, 
MRT 

WL       X  

Wickens, McCarley, Alexander, 
Thomas, Ambinder & Zheng (2008) 

A/SA E, MT, SA     X    

Wickens, Sebok, Kamienski & Bagnall 
(2007)   

A/SA, 
SEEV 

SA    X     

Notes: A-Automation interaction, E-Error, MT – Multi-task, SA – Situation Awareness, WL – Workload, R&R – Roles and 
Responsibility
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4. Model Architectures 

4.1 Overview 
Model architectures are defined differently than individual modeling efforts.  A model 
architecture is a framework for creating any number of more specific models to predict human 
performance.  The architecture can be a framework for representing cognition or attention (e.g., 
ACT-R or SEEV) that eventually needs to be implemented within a programming language, or 
an architecture can be a specific modeling tool that allows users to create models (e.g., 
IMPRINT).   
 
Across our reviews of modeling efforts, through all five deep dives, we have identified several 
architectures that were used in multiple modeling efforts, and were often used to model multiple 
aspects of pilot performance (e.g., situation awareness, workload). We describe these 
architectures below. While these descriptions may be partially redundant with the specific model 
effort applications discussed in Section 3, our emphasis here is somewhat different: how does the 
model work, how might it contribute to several different modeling aspects, and how usable and 
available is it?  
 
Table 4.1 provides a list of key architectures and the aspects of pilot performance that they 
modeled.  These data were compiled from the spreadsheet developed as part of this research.  
Each modeling effort that could be associated with a specific architecture (e.g., ACT-R, MIDAS) 
was identified.  The specific aspects of pilot performance that were modeled in these efforts were 
also identified and indicated with *’s in the table.  Finally, the extent to which the architecture 
had been validated was calculated by taking the total number of modeling efforts (again, in the 
spreadsheet) for a given architecture and dividing that into the total number of validated efforts 
for that architecture.  
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Table 4.1: Pilot modeling aspects and validation efforts addressed by different major architectures.  

              
Pilot 
Aspect: 

Human- 
Automation 
Interaction 

Communication Decision 
making 

Error Manual 
Control 

Multi-
Tasking 

Procedures Roles & 
Responsibilities 

Situation 
Awareness 

Spatial 
Disorientation 

Visual 
scanning 

Workload Percent of 
efforts that 
included at 
least a 
partial 
Validation 

Architecture              
ACT-R * * * * -- * * * * -- * * 6/15; 40% 

Air MIDAS * * * * -- -- * -- -- -- * * 6/11; 55% 

CASCaS * -- -- * -- * * -- -- -- * -- 4/10; 40% 

MIDAS -- * * * -- * * * * -- * * 6/11; 55% 

MRT  * -- -- -- -- * -- * -- -- -- * 3/8; 38% 

OCM -- -- -- -- * -- -- -- -- -- * * 7/9; 78% 

SEEV, N-
SEEV, 
A/SA 

* -- * -- -- * -- -- * -- * -- 5/7; 71% 

TLAP -- -- -- -- -- * -- -- -- -- -- * 4/5; 80% 

TOPAZ -- * * * -- -- * -- * -- -- -- 1/6; 17% 

• MRT – includes W/Index 
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4.2 Adaptive Control of Thought – Rational (ACT-R) 

4.2.1 What Is It? 
The Adaptive Control of Thought – Rational (ACT-R) is a unified theory of cognition that integrates 
theories of attention, cognition, and motor actions.  It was developed by Carnegie Mellon University 
for the Office of Naval Research in 1993, and has been in use and updated multiple times since then.  
ACT-R is a theory of cognition that has been represented as executable software that is programmed 
in LISP. 
 
ACT-R provides a framework for representing human cognition.  It models cognition through 
“production rules” or goal-directed behavior that is implemented through a series of “if-then” rules.  
It includes perceptual inputs and motor outputs.   
 
ACT-R’s main components are modules, buffers, and the pattern matcher.  ACT-R uses perceptual-
motor modules (visual and manual modules) to simulate interaction with the physical environment.  
Memory modules simulate declarative and procedural memory and allow the modeler to represent 
an operator accessing different types of information from long-term memory.  Declarative memory 
consists of simple facts.  Procedural memory consists of representations for how to perform different 
tasks. 
 
Buffers are interfaces for each of the ACT-R modules, except the procedural memory module. The 
contents of each buffer at a given time represent the state of ACT-R at that moment.  The pattern 
matcher uses the buffer contents to identify a relevant schema to select goals and behavioral rules.  
Cognition is modeled as a succession of these changes as instructed by the pattern matcher.  
 
ACT-R does not have a goal hierarchy, as a pre-established hierarchy would suggest perfect memory 
on the part of the modeled operator.  With the pattern matcher, whatever situation provides the 
closest match is what changes the state of the system.   
 
Another important aspect of ACT-R is that it models the actual time required for cognitive steps 
(e.g., retrieving and item from declarative memory) or implementing an action (e.g., shifting gaze, 
selecting an item on a display).  Thus it readily models procedural activities such as programming an 
FMS. The times, provided as default parameters in ACT-R, are based on psychological theories or 
empirical research (e.g., 50 msec to retrieve information; Fitts’ law for scanning a display or 
selecting a control).  In addition to timing aspects, ACT-R models errors of omission, where a 
retrieval from memory fails, and errors of commission, where an error occurs due to imperfect 
matching. 
 
ACT-R 6 version 1.4 [r1261] (the latest version as of August 9, 2012) is available on the website:  
http://act-r.psy.cmu.edu/actr6/  
 
 
Inputs: Data from psychology experiments, general assumptions about human cognition, 
assumptions about a particular domain 
 
Outputs: overt behavior, time to perform the task, accuracy in the task, and whether or not the task 
was performed 
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4.2.2 What Has It Been Applied To? 
ACT-R has been used in aviation, and in many other domains.  These include human-computer 
interaction, department of defense research, education (in cognitive tutoring systems), and 
neuropsychology.  It has been used to predict the time to complete task sequences (Fleetwood, 
Lebiere, Archer, Mui, & Gosakan, 2006), if operator error occurs (John et al., 2009), and the type of 
error (Boehm-Davis et al., 2002).  
 
ACT-R models have been used in more than 700 different scientific publications. 
A long list of references is available: http://act-r.psy.cmu.edu/publications/index.php. 
 

4.2.3 Where Can You Get It? 
ACT-R is an open-source architecture, available online at:   
http://act-r.psy.cmu.edu/  
 

4.2.4 How Usable Is It? 
ACT-R must be implemented using the LISP programming language.  The CMU ACT-R website 
offers numerous resources for helping potential ACT-R modelers in learning how to use the tool.  
Tutorials and manuals are available, free of charge, online http://act-r.psy.cmu.edu/actr6/.  In 
addition, CMU hosts a summer school and workshops for learning to use ACT-R: http://act-
r.psy.cmu.edu/workshops/  Further, CMU provides a contact person for support 
db30@andrew.cmu.edu 
 

4.2.5 How Extensively Validated Is It? 
ACT-R is extensively validated.  Validation efforts are used to update and refine the cognitive 
theory behind the model.   
 

4.3 Attention – Situation Awareness (A/SA) 

4.3.1 What Is It? 
The A/SA (Attention – Situation Awareness) modeling architecture was developed by researchers at 
the University of Illinois for NASA (Wickens, McCarley et al., 2008).  It predicts operator situation 
awareness by using an attention model and a belief-updating module.  The underlying attention 
model is SEEV (salience, effort, expectancy, and value).   
 
SEEV predicts operator visual scanning, and says that scanning is driven by two bottom-up factors 
(salience and effort) and two top-down factors (expectancy and value).  The salience, or 
obviousness, of a visual indication increases the likelihood that a cue will draw the operator’s 
attention.  Expectancy, the expectation that the information is changing frequently (events occurring 
rapidly) and therefore needs to be sampled often, also affects how often the operator looks at a 
display.  Value, or the importance of information, increases the likelihood that the operator will view 
the information at the location of the valued commodity.  Effort, the difficulty associated with 
moving attention to  a display – either due to distance from the current visual focal point, or the need 
to navigate among pages in a multifunctional display – is the only factor that decreases the 
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likelihood of an operator viewing a display more often. Experienced operator scanning is driven 
relatively more by top-down factors (primarily by expectations and importance of information). The 
model runs as a discrete event simulation of SEEV, with probabilistic movement to attentional 
locations, to a degree proportional to the overall contributions of the four components.  
  
Situation awareness is modeled according to two stages of the Endsley (1988) three-stage model, 
where stage 1 represents perception and stage 2 is comprehension (See Section 3.3 for elaboration of 
these concepts).  For an operator to have awareness, s/he must perceive or attend to the relevant 
display.  SEEV predicts whether or not the operator perceives the data.  Once stage 1 awareness is 
attained, the belief-updating module in the A/SA architecture makes further predictions.  A/SA 
models situation awareness on a scale of 0 to 1, where 1 is perfect awareness.  Each display is 
associated with a particular type of awareness that the operator needs.  When the display is viewed, 
awareness for the parameters on that display increases to 1.  Over time, awareness decreases by a 
postulated decay function.  For accurate information, the awareness decreases after a minute, but if 
distracting information is viewed, awareness decreases much more rapidly.  The stage 1 SA of 
individual parameters is aggregated, and when sufficient parameter awareness exists, the operator is 
said to have achieved higher stages of SA.  The overall awareness, in turn, drives scanning behavior.  
If the modeled operator has good SA, scanning is driven primarily by expectancy and value.  
Conversely, if the modeled operator has poor SA, sub-optimal scanning results.  In the application 
reported in Wickens, McCarley et al. (2008), SA affects operator decision making, with better SA 
resulting in better decisions. 
 
Visual scanning may be driven by habit, as in SEEV; but also by salient time stamped events that 
capture attention, such as the onset of a single warning indicator. The N-SEEV (Noticing-SEEV) 
model is an extension of SEEV (also developed by University of Illinois for NASA), and predicts 
operator noticing of a change in a visual field (McCarley et al., 2009; Sebok et al., 2006; Steelman-
Allen & Wickens, 2011; Wickens, Hooey et al., 2009).  The N-SEEV model uses SEEV to predict 
scanning, with the difference that a change occurs at some point in a simulation.  The change is 
associated with a pre-defined location and salience in the visual field.  Operator scanning continues, 
and if the operator views the changed display within a given time frame (typically within 10 seconds 
of the change), the operator is said to have noticed the change.  If the operator does not view the 
change within that time frame, N-SEEV predicts that change blindness will occur, and the operator – 
even if s/he views the display – will not notice the difference.  N-SEEV is typically run multiple 
times to generate a distribution of noticing times.  The probability that the operator will notice the 
change is calculated based on the probability of runs that had fixations landing on the display where 
the relevant event occurred before the (e.g., 10 second) cutoff.  The predicted time required for the 
operator to notice the change is calculated as the average noticing time for all of the “noticed” 
changes.    
 

4.3.2 What Has It Been Applied To? 
• SEEV: Aviation, Driving, Nursing 
• A/SA: Aviation 
• N-SEEV: Aviation 
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4.3.3 Where Can You Get It? 
The A/SA, SEEV, and N-SEEV architectures are not software tools, nor are they particularly 
complex frameworks (like, e.g., ACT-R).  They are practical models that can easily be implemented 
in a variety of programming languages.  It is suggested that the models are developed with SME 
input, to identify the salience, effort, expectancy and value parameters for the visual displays in 
different operating conditions.   
 

4.3.4 How Usable Is It? 
The A/SA, SEEV, and N-SEEV architectures are easy to apply.  No online support is available for 
these architectures but a wide variety of publications describes their implementation.  The SEEV 
model can be implemented with simple analytic equations, although SMEs are required to estimate 
parameters of expectancy and value. 
 

4.3.5 How Extensively Validated Is It? 
A/SA, SEEV, and N-SEEV have all been validated against aviation human performance data.   
 

4.4 The Cognitive Architecture for Safety Critical Task Simulation (CASCaS) 

4.4.1 What Is It? 
CASCaS (Cognitive Architecture for Safety Critical Task Simulation) was developed as part of a 
European Union project, HUMAN: Model-Based Analysis of Human Errors During Aircraft 
Cockpit System Design1.  The intent for CASCaS was to address specifically the cognitive processes 
that are relevant for safety critical system design, particularly in aviation.  As Lüdtke, Osterloh, and 
Frische (2012, p.1) state: “The innovative aspect of CASCaS is the prediction of human errors 
resulting from an interaction of (1) learned mental models (Routine Learning/Learned Carelessness), 
(2) actual limited cognitive performance and (3) safety nets in aircraft cockpit design (e.g. flashing 
indication, alerts and crew interaction).” 
 
The HUMAN project included an effort to create an executable flight crew model that incorporated 
cognitive error producing mechanisms.  This model was created using CASCaS, and it interacted 
with a flight simulator and a model of a cockpit interface.  The model included routine learning, the 
learning of shortcuts, and attention allocation (Lüdtke, Osterloh, Mioch, Rister, & Looije, 2009). 
 
The CASCaS model has been used to predict visual scanning behavior, dwell times in areas of 
interest (AOIs), and the time required to notice specific visual indications in the cruise and approach 
phases of flight (Lüdtke, Osterloh, & Frische, 2012).  CASCaS, like ACT-R, is a cognitive 
architecture, which provides a structure and set of if-then rules for simulating human cognition.   
 
CASCaS divides cognitive processes and errors into three different levels, depending on operator 
experience with a particular task:  the autonomous, the associative, and the cognitive level.  These 

                                                
1 This project was performed during 1 March 2008 – 28 Feb 2011. More information is available at: 
EU website:  http://ec.europa.eu/research/transport/projects/items/human_en.htm  
HUMAN Aero site:  http://www.human.aero/  
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correspond, respectively, to the skill-based, rule-based, and knowledge-based levels of behavior 
defined by Rasmussen (1983).  New tasks require significant effort on the part of an operator, and 
are performed at the cognitive level.  These are modeled by the operator having a high-level goal, 
and selection of a plan by which to meet that goal.  When operators are somewhat familiar with a 
task, they are working on the associative level.  These types of tasks are modeled by selection of a 
set of rules.  Finally, frequently performed tasks are autonomous, and performed without conscious 
thought.  These include maneuvering the aircraft (Lüdtke, Osterloh, Mioch, Rister, & Looije, 2009). 
 
In solving problems, humans typically apply the easiest solution – autonomous, if possible; 
associative, if they can identify a relevant pattern for the situation; and cognitive if absolutely 
necessary due to lack of established rules or safety-critical concerns.  The Lüdtke, Osterloh, et al., 
(2009) team focus on error mechanisms at the associative and cognitive levels. 
 
Knowledge in the associative and cognitive layers is stored in the memory component.  Short term 
memory includes data that have been perceived by the modeled operator from the environment or 
derived from rules.  Long term memory stores flight procedures as “if then” rules.  When the “if” 
condition is met, the “then” condition is triggered. Figure 4.1 below shows an overview of the 
CASCaS components. 
 

 
Figure 4.1.  Overview of CASCaS Components 

From http://www.isi-padas.eu/sites/default/files/ISi-PADAS_Newsletter_5.pdf 
In another CASCaS effort (Lüdtke, Osterloh, Mioch, Rister, & Looije, 2009), the CASCaS model 
predicts cognitive errors such as Learned Carelessness and Cognitive Lockup (See 3.1 and 3.4 for 
descriptions of these applications). 
 

4.4.2 What Has It Been Applied To? 
CASCaS has been applied to a variety of aviation tasks, but primarily focusing on pilot error 
mechanisms.  It has also been applied to modeling vehicle driver performance (http://www.isi-
padas.eu/sites/default/files/ISi-PADAS_Newsletter_5.pdf).  
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4.4.3 Where Can You Get It? 
It does not appear that CASCaS is available, neither as open source product nor for purchase.  For 
more information, the reader should contact Dr. Andreas Lüdtke (Lüdtke@offis.de). 
 

4.4.4 How Usable Is It? 
This is not relevant, since the architecture is not available. 
 

4.4.5 How Extensively Validated Is It? 
CASCaS has been quite extensively validated as part of the EU project that funded it.  The effort 
included many modeling phases as well as empirical, pilot in the loop studies.  Validation efforts 
focused on particular aspects of performance (e.g., when an error occurred in seeking additional, 
safety-critical information).   
 

4.5 The Man-machine Integration Design and Analysis System (MIDAS)  

4.5.1 What Is It? 
The Man-machine Integration Design and Analysis System (MIDAS; 
http://humansystems.arc.nasa.gov/groups/midas/) is an established HPM that predicts human-system 
performance under nominal and off-nominal conditions (Gore, 2010). MIDAS is a dynamic, 
integrated human performance model environment that facilitates the design, visualization, and 
computational evaluation of complex man-machine system concepts in simulated operational 
environments. MIDAS symbolically represents many mechanisms that underlie and cause human 
behavior including the manner that the operator receives/detects information from an environment, 
comprehends and registers this information in a memory store, decides on a response, and responds 
to the information within the context of operational rules and human performance capacities. 
MIDAS combines these symbolic representations of cognition with graphical equipment 
prototyping, dynamic simulation, and procedures/tasks to support quantitative predictions of human 
system effectiveness, and improve the design of crew stations and their associated operating 
procedures. MIDAS provides an easy to use and cost-effective means to conduct model simulation 
experiments that explore "what-if" questions about domains of interest. Figure 4.2 illustrates the 
organization and flow of information among the MIDAS components. For a description of the 
MIDAS processes, the reader is directed to Gore (2010). 
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Figure 4.2: Illustration of the flow of information into MIDAS v5. 
 
MIDAS gives users the ability to model the functional and physical aspects of the operator, the 
system, and the environment, and to bring these models together in an interactive, event-filled 
simulation for quantitative and visual analysis (Hart et al., 2001). Operator behavior within a 
MIDAS simulation is driven by a set of user inputs specifying operator goals, procedures for 
achieving those goals, and declarative knowledge appropriate to a given simulation. These asserted 
knowledge structures interact with and are moderated by embedded models of perception for 
extracting information from the modeled world and embedded models of cognition for managing 
resources, memory, and actions. In this way, MIDAS seeks to capture the perceptual-cognitive cycle 
of real world operators who work towards their most immediate goals given their perception of the 
situation and within the limitations of their physical and cognitive capacities. In MIDAS, as in the 
real world, perceived changes in the world - new information or events - may cause changes in the 
adjudged context of the situation triggering new goals or altering methods to achieve current goals. 
Such perceived changes may be precipitated through the behavior of other modeled entities or by 
user specified time-based, condition-based, or probabilistic events set within the simulation (e.g., a 
system failure or the receipt of an incoming air traffic control clearance). It may, in fact, be the 
impact of the operator's own actions which lead to changes in context and goals.  
 
In sum, MIDAS v5 can be used to: develop guidelines (e.g. for NextGen aviation roles and 
responsibilities and information requirements), design and test procedures, conduct “what-if” 
scenario evaluations, design and evaluate cockpit designs and information placement, evaluate 
multi-crew performance designs, predict situation awareness profiles of multiple operators, generate 
stochastic human performance, predict attention drivers, predict cockpit-related attention overload, 
generate human operator workload timelines, and determine optimal strategies for human-
automation interaction. 

 
Inputs: Data from psychology experiments for the empirically-driven operator models (human 
perception, cognition, memory, decision, and behavioral models), task network models input into a 
discrete event simulation tool to represent the tasks and activities required of the human in specific 
contexts, visualizations of anthropometric characters and of the flight deck and other crewstation 
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assumptions (e.g., using a computer aided design [CAD] model for a Boeing 747 cockpit), display / 
environmental information context weights (to populate the attention and situation awareness 
models). 
 
Outputs: 
Overt/observable behavior, time to perform tasks, task accuracy, and task completion / success / 
failure, human error given task failure, operator workload (visual, auditory, cognitive spatial, 
cognitive verbal, fine motor, gross motor, and vocal), task/environmental timelines, current ongoing 
tasks, situation awareness profiles, the task network of the required operator actions, CAD of 
candidate cockpit designs, operator strategies for human automation interaction and integration. 
 

4.5.2 What Has It Been Applied To? 
Primarily to civilian cockpit design, but applications of MIDAS have also been made to space 
systems (crew vehicle exploration, ISS interface, robotic arm control), military helicopters, and air 
traffic control. The full list of MIDAS application domains can be found online at 
http://humansystems.arc.nasa.gov/groups/midas/applications.html while the publications reporting 
on these and on the empirically driven operator models can be found online at 
http://humansystems.arc.nasa.gov/groups/midas/publications.html 
 

4.5.3 Where Can You Get It? 
A software usage agreement with NASA Ames needs to be obtained to use the software (MIDAS 
NASA Civil Servant POC: David Foyle – David.C.Foyle@nasa.gov). The MIDAS software 
operates on the Windows NT platform and requires the freely available .net framework available 
from the Microsoft website. 

4.5.4 How Usable Is It? 
MIDAS has proven to be a flexible and useful tool for representing humans operating in a variety of 
environments. Its greatest strength lies in its ability to represent conceptual designs or candidate 
procedures in software and then allow a designer or potential user see them operated by a virtual 
crewmember in the context of a simulation of the target environment. The graphical user interface, 
timeline output, and anthropometric visualization have made MIDAS accessible to a broader range 
of potential users.  The code has been used extensively over the previous four years. However, from 
the perspective of a formal usability evaluation determination, given that the MIDAS v5 user guide 
is currently under development, it is best to consider MIDAS an internal R&D software tool. The 
software can be downloaded onto a Windows NT platform from a website.   

4.5.5 How Extensively Validated Is It? 
MIDAS has undergone extensive verification and validation efforts. Each of the component models 
of human behavior has been validated through empirical human simulation comparison. The 
component models were then computationalized (represented in algorithmic form) and verified 
within the MIDAS architecture through extensive verification exercises. The integrated architecture 
(which contains the host of validated component models) has been validated in (Gore Hooey, Socash 
et al., 2011). 
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4.6 Multiple Resource Model 

4.6.1 What Is It? 
The multiple resource model predicts the success or failure of multi-tasking in the cockpit. The 
architecture of the multiple resource model is generally built around the multiple resource theory of 
multi-task performance (Wickens, 1984; 1990; 2005; Wickens, Bagnall, Gosakan, & Walters, 2011, 
North & Riley, 1989). It is an analytic model that contains two macro elements. 
  

•  A conflict matrix that predicts the effect of competition for specific (multiple) resources 
between two time-shared tasks. 

•  A demand component that predicts the interfering effect of the difficulty of the two tasks. 
 
Each is described in turn. 
 
The conflict matrix. The multiple resource model (Wickens, 2008b) assumes that human information 
processing depends upon some or all of levels along four dichotomous dimensions, as shown in the 
table. Table 4.2. 
 
Table 4.2.  Dimensions of the multiple resource model (modalities now also includes tactile in the 
latest version) 
DIMENSION Level 1 Level 2 

Stages Perceptual-cognitive Action selection 

Codes Verbal/linguistic Spatial 

Modalities Visual Auditory 

Visual channels Focal Ambient. 

 
Note that there is some nesting within these. For example the two visual channels are nested only 
within the visual modalities, and the different modality channels are nested only within 
perception/cognition. Note also that the latest version of the multiple resource model now contains 
Tactile, as a 3rd level of Modalities (Wickens, Hollands et al., 2012) 
 
Any given task can be identified as occupying one or more cells of the matrix. For example talking 
to ATC will occupy action selection and verbal/linguistic. Thus any pair of tasks may vary in the 
extent to which they occupy the same cells or different cells. The key to computing resource 
conflict, is that two tasks will interfere with each other to the extent that they occupy more 
overlapping cells. The computation mechanism of such prediction is based on the conflict matrix 
between the tasks. To simplify, if only two resource dimensions were specified (stages and codes) 
such a conflict matrix would be shown as in Table 4.3 
 



 

 
 
 

88 

Table 4.3.  Representation of the conflict matrix in a simplified four-resource version of the multiple 
resource model. 

Task A 
 

Task B 

Perceptual-
cognitive 
spatial 

Perceptual 
cognitive verbal 

Action 
Selection - 
spatial 

Action 
Selection - 
verbal 

Perceptual –
cognitive 
spatial 

.XX .YY .ZZ .AA 

Perceptual –
cognitive verbal 

 - - - 

Action 
Selection - 
spatial 

  - - 

Action 
Selection - 
verbal 

   - 

 

Then the entries within each cell will show how much conflict there will be within a cell demanded 
by both the task labeled across the rows, and that labeled down the columns. For example if Task A 
is responding to ATC (response verbal) and Task B is examining a map for route vectors (perceptual 
- cognitive spatial) the conflict interference between them will be 0.AA. These interference values 
are fractions ranging from 1 to 1.0. Details on specific numbers can be found in Wickens, 2002a; 
2005). Thus any pair of tasks, whose resource demands are ticked off along across the top, and down 
the sides, will populate a certain number of cells within the matrix. The conflict values for those 
populated cells are summed to achieve a total resource conflict score. 
 
Total Demand score 
 
Table 4.4  now depicts the original task outline from Table 4.3, within the framework of an outer 
row and column. These explicitly label the two tasks (here map reading and target searching) and 
assign a demand vector to each: map reading is heavily perceptual/cognitive and spatial, but here 
may involve a simple voice response. Visual search (e.g., traffic search out the window) demands 
only visual perception. The total task demand is simply the sum of the demands of the two tasks, 
here 2 + [3+1] = 4. Also in this example it can be seen that the conflict score is [.XX + .AA] (the 
sum of the two populated cells). Hence the total interference is predicted to be the weighted sum of 
the demand score and the conflict score. 
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Table 4.4 The simplified four-resource model depicting the task demand vectors of the two 
competing tasks, map reading and target search. 
 Map read 3 0 0 1 
Target 

search 
 Perceptual-

cognitive 
spatial 

Perceptual 
cognitive 
verbal 

Action 
Selection - 
spatial 

Action 
Selection - 
verbal 

2 Perceptual –
cognitive 
spatial 

.XX .YY .ZZ. .AA 

0 Perceptual –
cognitive 
verbal 

 - - - 

0 Action 
Selection - 
spatial 

  - - 

0 Action 
Selection - 
verbal 

   - 

 
Note that in this computational architecture, the two components are treated independently and do 
not interact. That is, the “.XX” value in the upper left had cell, will be the same with the demand 
vectors of 2 and 3 (as shown) as it would be if these were, for example, 1 and 1 (two very easy 
perceptual tasks). Riley et al. (1991) have provided data to show that this simple non-interacting 
version is fully adequate.  
 
Within the model, the conflict values within the matrix are relatively stable and fixed within the 
model. However a task analysis is required by the model user to establish which resources are 
demanded by each task, and the degree of demand within each resource. The latter may be estimated 
by SMEs, or in some cases, may be available from table lookups, such as the McCracken and 
Aldrich scale. 
 
The depicted model is analytic, and its computation is straightforward. However two elaborations 
can be made to provide a discrete event simulation model: 
 

1. As noted in the TLAP architecture (See 4.7 below), if task times are variable, then the 
overlap between two concurrent tasks will vary according to task time distributions. Then 
multiple resource conflict and demand should only be computed during the periods when the 
two tasks overlap in time. During epochs of single task performance, multiple task 
interference will not (by definition) be occurring. 
 

2. This version of the model assumes a level of interference as computed above. But in reality, 
if a pilot is confronted with two tasks, whose demand, or resource conflict is so high that it is 
impossible to process them concurrently, then, by necessity, she must shed one or the other. 
This task shedding behavior is based on a red-line assumption which is not itself an inherent 
part of the multiple resource model, and is addressed instead in the architecture of scheduling 
models such as the scheduling module for task management within MIDAS (Gore, 2013, in 
preparation; see Section 4.5). 
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4.6.2 What Has It Been Applied To? 
Primarily to flying applications as described in 3.2; although there is one application to driving with 
in-vehicle technology (Horrey & Wickens, 2004). 

4.6.3 Where Can You Get It? 
The multiple resource model is not available as a stand-alone software package. However versions 
of this model have been incorporated into MIDAS (see 4.3 above), and into IMPRINT.  IMPRINT is 
available (upon request) to U.S. Government agencies at the following URL:  
http://www.arl.army.mil/www/default.cfm?page=445. 

4.6.4 How Usable Is It? 
Approximations to computing the two components (conflict and demand) are relatively easy to 
accomplish. Demand values can be assigned by SME’s. The demand vectors associated with each 
task can also be assigned by SME’s. Different sets of conflict values within the conflict matrix are 
available in the published literature (e.g., Wickens, Bagnall et al., 2011). 

4.6.5 How Extensively Validated Is It? 
Several flight deck validations of the computational model were described above. A single driving 
validation is described in Horrey and Wickens, (2004). Other less quantitative validations of 
multiple resource predictions in a flight deck environment have been carried out by Wickens, 
Sandry, and Vidulich (1983; military cockpit), and Wickens, Goh et al (2003; GA cockpit with 
NextGen technology). 

4.7 Optimal Control Model (OCM) & Flight Control Workload 

4.7.1 What Is It? 
The Optimal Control Model (OCM; Rikard & Levison, 1981) is actually a prototype of a more 
general class of manual control models that have been employed (and validated) to predict flight 
handling qualities (see Wickens, 1986); and the latter commodity is closely related to subjective 
workload, or more specifically psychomotor load (within a VACP context).   
   
The general architecture of OCM (Kleinman, Baron, & Levison, 1971; Levison, 1989) is to model 
three fundamental stages of pilot information processing on the flight deck. These are: 

 
1. Estimating the state of the vector of displayed variables necessary to control an axis of 

flight (e.g., vertical flight, lateral flight). An optimal Kalman filter is incorporated to do 
this estimation. 

 
2. Predicting the future level of these variables to the extent they are subject to lag, and that 

stable control depends on predicted state, rather than current state. 
 

3. Translating the estimated predicted state into a vector of control gains, applied to 
different flight controls. This gain matrix is tuned to optimize the balance between the 
need for precise control (minimizing error) and “smooth flight” (e.g., minimizing large 
rapid control movements).  

 
All three stages contain optimization components, hence the name “optimal” control. 
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Importantly, these processes are subject to, and hence modeled with: 

• Inherent lags in the human processing system (default, around 1/3 second) 
• Noise added to the estimation and control processes.  
 

The most important noise is that added to estimation and observation, (called equivalent 
observation noise) and is assumed to grow linearly as visual attention is allocated away from the 
controlled variable in question (Levison, Elkind, & Ward, 1971), This function provides an 
important mechanism for multi-task performance and workload prediction. 

4.7.2 What Has It Been Applied To? 
The model has been primarily applied to flight handling qualities, although one application has been 
to driving (Levison, 1989). 

4.7.3 Where Can You Get It? 
The model was at one time available from Bolt, Beranick, and Newman. It is not clear if it still is 
available. 

4.7.4 How Usable Is It? 
The OCM is based on the frequency domain language of linear and non-linear feedback control 
theory. Hence it is designed to work on analog computers (or digital simulation of linear dynamic 
systems in the frequency domain). As a consequence, its use requires some degree of specialized 
knowledge in control theory, generally taught within the discipline of aeronautical engineering. 

4.7.5 How Extensively Validated Is It? 
The model has been validated in a variety of applications to predict flight control performance and 
workload. The Rickard and Levison (1981) study cited is prototypical of a number of others reported 
in various proceedings of the Annual Conference of Manual Control. 

4.7.6 Extensions of OCM 
Other models of manual control within the frequency domain have also been produced and validated 
to predict flight path tracking performance and occasionally workload. Perhaps the most common of 
these is the Crossover model of McRuer and Jex (1967). We do not review this model here because 
it is not really a model of human performance, but rather, a model of the whole human-aircraft 
control system. However we do note that one important feature of this model (and other models of 
manual control), is the close correlation found between model-predicted lag of an aircraft axis, and 
measures of handling qualities (assessed by the Cooper-Harper rating scale) which we noted above, 
is a proxy for the subjective estimate of psychomotor workload. It is assumed that when there is lag 
along flight control axes, the pilot must “generate lead” (e.g, predict) in order to compensate for the 
lag and retain flight stability. Prediction is workload-demanding (Wickens, Gempler, & Morphew, 
2000) and the greater the need for prediction in flight control, the greater the workload (McRuer & 
Jex, 1967; Wickens, 1986; figure 39.31). 
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4.8 The Traffic Organization and Perturbation Analyzer (TOPAZ)  

4.8.1 What Is It? 
The Traffic Organization and Perturbation Analyzer (TOPAZ) is a multi-agent dynamic risk model 
designed to evaluate system safety within Air Traffic Management (ATM).  The system uses a 
dynamic extension of Petri nets and Monte Carlo simulations to analyze the safety of air traffic 
systems through the generation of conditional collision risks.  TOPAZ can account for both nominal 
and non-nominal events and can represent the dynamic interactions between human operators, 
technical systems and procedures. 
 
TOPAZ has been under development for a number of years.  The initial system included a 
simulation environment based on high-level petri nets.  This included support for developing petri 
net modules for human behavior, the environment and systems within the ATM environment.  
Additions have included multi-agent situational awareness modeling, support for bias and 
uncertainty assessment, and modules for accident model specification (Stroeve et al., 2009). 
 
The system supports the development of systemic accident models describing the performance of the 
system as a whole in which accidents become emergent properties of the variability within the 
system (Stroeve et al., 2009).  This quality is important for NextGen in that it supports the evaluation 
of very low frequency events, such as runway incursions, for which little accident data exists. 
 
The process of developing the model involves representing the dynamic characteristics of related 
agents, such as human operators and technical systems, within a hierarchical structure.  These model 
structures can represent: 
 

• Key aspects of agents including SA, task scheduling, flight phases, alerting systems 

• Agent modes related to human and system performance 

• Time characteristics of tasks or systems such as event distributions 

• Agent interactions such as task transitions or system availability 

• Interactions including the effects of SA on performance and the effect of system availability 

(Stroeve et al., 2009) 
 
Numerous Discrete Event Simulation Monte Carlo runs of the model then provide conditional 
probabilities of incident occurrence based on the dynamic interactions of agents and interactions 
represented.  The TOPAZ system also supports both bias and uncertainty analysis allowing the user 
to assess the relative contribution of agents and events to the overall system risk. 
 

4.8.2 What Has It Been Applied To? 
The primary use of TOPAZ has been the evaluation of collision probability within the ATM 
environment.  As mentioned in the Error (3.1) and SA (3.3) sections, the most common scenario 
evaluated has been runway incursions resulting from one taxiing aircraft erroneously crossing a 
runway in which another aircraft is on a take-off roll.  The model includes dynamic representations 
and interactions of the following agents: 
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• The motions of the take-off and taxiing aircraft through the take-off roll and approach to 
runway intersection respectively 

• The availability and dynamics of the surveillance system including relative position and 
velocities of each aircraft and the resulting alerts and alarms 

• The pilots flying the two aircraft and a range of performance dynamics such as visual 
monitoring, conflict detection and reaction 

• The runway and taxiway controllers and performance dynamics such as communication, 
conflict detection and reaction. 

• The availability and dynamics of the communications systems between the controllers and 
pilots including delays, frequency selection and the nominal state of these systems. 

 
Figure 4.3 shows the relationships between the agents. The scenario begins with the take-off roll and 
taxiing of the two aircraft (nodes E10 & E12) and ends with the probability of detection and 
avoidance or the collision.  In one analysis, a huge number of Monte Carlo runs were used to 
generate the probability of the collision event.  This included sensitivity analysis removing agents or 
varying aspects of agent behavior to assess the effects on the overall risk. 
 

 
Figure 4.3. Shows the relations events for conflict recognition and collision avoidance actions by the 

agents in the runway incursion model (from Stroeve et al., 2011). 
 
The results of the bias and uncertainty analysis show that the understanding of pilot performance is 
the strongest contributor to uncertainty in the risk results.  This result would help to direct the 
analysis team to focus data gathering and modeling efforts on ensuring the accurate understanding 
and representation of pilot performance within the model.  In addition, an analysis of the conditional 
probabilities of each event given a collision illustrates the individual contributions of each agent to 
the overall risk.  For example, overall collision risk only increases by a factor of 1.06 without an 
ATC alert system but increases by a factor of 500 if none of the agents (pilots and controllers) are 
monitoring or in the control loop (Stroeve et al., 2011). 
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4.8.3 Where Can You Get It? 
TOPAZ has been developed by and is available from the National Aerospace Laboratory NLR, Air 
Transport Safety Institute, Amsterdam, The Netherlands www.nlr.nl. 
 
More information about the model can also be obtained by contacting Henk Blom. 
(Henk.Blom@nlr-atsi.nl) 
 

4.8.4 How Usable Is It? 
TOPAZ is a complex system requiring considerable expertise and effort.  The process includes 
identification of the operation and hazards to be modeled and the development of high-level Petri 
nets for the various agent models.   
 

4.8.5 How Extensively Validated Is It? 
The studies describe a mathematical process of verification rather than validation.  Actual data with 
which to compare model outputs in a true validation are difficult to obtain for such low-probability 
events. 

4.9 Time Line Analysis Procedure (TLAP) 

4.9.1 What Is It? 
This model has a simple straightforward architecture (Parks & Boucek, 1989). A time line is laid out 
concerning when different cockpit tasks need to be performed. Each task is assigned a length, which 
may be fixed (in the analytical version) or have a variance (in a discrete event simulation version). 
Tasks may overlap in time (as flying the aircraft, while communicating with ATC). Then the total 
time of a mission is subdivided into time units (e.g., 10 seconds), and within each unit, workload is 
computed as the ratio of the total of task times within that unit, to the unit length. For example if 
there are two 5 second tasks within the 10 second unit, the workload is 10/10 = 1.0 (or 100%). 
 
Note that at this simple level, the model does not distinguish whether the two 5 second tasks are 
performed sequentially or simultaneously. A more refined version of the model adds a penalty for 
two tasks occupying the pilot at the same time (e.g., simultaneously) and this version has been found 
to be a more accurate predictor of performance breakdowns (Sarno & Wickens, 1995). 
 
The model can be converted from an analytic model (calculating ratios) to a discrete event 
simulation model, if the time required by each task has a variance associated with it, and each 
iteration picks (randomly) a time demand from the distribution for each task. The time line analysis 
procedure does not incorporate specific assumptions about the pilot response when there is 
concurrence (e.g., possible shedding or delaying the task, as in a queuing theory model), nor does it 
consider the nature of the task in question, other than its length. These issues are addressed in the 
Multiple Resource Architecture. 

4.9.2 What has it been Applied To? 
As described in section 3.2, it has been applied to many cockpit time-line procedures, with Stone et 
al. (1987) and Parks & Boucek (1989) offering prototypical examples. 
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4.9.3 Where Can You Get It? 
The original Time Line Analysis (TLA) module was part of a software tool called Crewstation 
Human Engineering Software System (CHESS), it was used for the Boeing 757/767/747-400 
certification. It has not been employed subsequently for certification, and does not currently exist 
within a commercially available software tool. 

4.9.4 How Usable is it? 
TLAP is extremely usable, and any user can follow the general guidelines presented in section 3.2.4; 
or outlined in Parks & Boucek (1989) to create his/her own analysis. 

4.9.5 How Extensively Validated is it? 
In our review, there are surprisingly few high validity (e.g., commercial flight deck) validations 
against performance data or task shedding data; given the ease of use. But see Sarno & Wickens 
(1995) for lower validity validation. 

4.10 GOMS  

4.10.1 What Is It? 
The GOMS (Goals Operators Methods, Selection rules) is an approach to task analysis that is based 
upon the keystroke level model of human information processing originally crafted by Card, Moran, 
and Newell (1983). This approach provides fundamental times for basic operations, like looking, 
item rehearsal, or reaching (as a function of distance and target width).  Following a GOMS task 
analysis, the analyst can assemble tasks so as to create a network of more complex operations, 
necessary to complete higher-level tasks, like programming an FMS (Polson, Irving, & Irving, 1994; 
John et al., 2009).  The GOMS approach has been used together with the ACT-R modeling 
architecture to create human performance models that provide predictions for both cognitive errors 
(ACT-R) and time to complete task sequences (GOMS). 
  
Gil et al., (2012, in press) have enhanced the basic GOMS tool, described in Polson and Javaux 
(2001), to create E-GOMSL (Enhanced GOMS language), an architecture that is more versatile and 
appears to be more specifically focused on cockpit tasks. E-GOMSL identifies a set of basic 
operators: [confirm, think-of, look-at, store, recall]. Each operator in turn is characterized by a set 
of four attributes: [Channel, VACP; Control object (e.g., working memory), syntax, and time (or 
time distribution)]. 
 
Considerable effort in task analysis appears to be required to assemble the operators to approximate 
the cockpit tasks; but the model will output task times as well as variables such as working memory 
load, that are important for predicting workload (Gil & Kaber, 2012). 
 
The Model, and the requirements for programming, is well described in Gil and Kaber (2012). 

4.10.2 What Has It Been Applied To? 
The GOMS approach to task analysis has been applied extensively in analyses of human-computer 
interaction.  It could potentially be used to model any detailed level of interaction in which an agent 
performs discrete action sequences. There have been some variants of GOMS applied in the aviation 
environment. These variants include the Cognitive, Performance, Motor (CPM-GOMS).  CPM 
GOMS  has focused on F22 operations as well as predicting mouse clicks for controllers 
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(Remington, Matessa, Freed, & Lee, 2003).  A more recent application of the GOMS approach that 
combines two theory-based tools (CogTool and SANLab) has been used to address human 
variability in skilled performance as applied to the Boeing 777 Flight Management Computer (FMC) 
and the Control and Display Unit (CDU) (John, Patton, Gray, & Morrison, 2012). This paper 
contains no validation data. 
4.10.3 Where Can You Get It? 
The GOMS method can be applied to any tasks that involve keystroke-level type interactions.  
Information on this method is available in a variety of sources, including: 

Kirwan, B. & Ainsworth, L.K.  (1992).  A Guide to Task Analysis.  Washington, DC:  Taylor 
and Francis. 
Card, S., Moran, T., & Newell, A. (1983). The Psychology of Human–Computer Interaction. 
Hillsdale, NJ: Erlbaum. 
http://en.wikipedia.org/wiki/GOMS 

 

4.10.3 How Usable Is It? 
GOMS is a potentially time-consuming method for analyzing task sequences, but it can provide 
useful insights for detailed task sequences.  The only usability concerns are related to learning the 
method itself; there is no particular software that the analyst needs to learn or use.   
 

4.10.4 How Extensively Validated Is It? 
GOMS has been in use for 3 decades (as of the date this report was produced) and numerous 
validations have been conducted using the method (e.g., Gray, John & Atwood, 1993).  
  

5. DISCUSSION and CONCLUSIONS 

5.1 Validation Efforts 
In evaluating the overall success of the aviation modeling community in generating valid pilot 
performance models, our findings were somewhat disappointing. In Table 2.4 (see Section 2.2.4), 
we reported an overall validation rate (across all model aspects) of 36%; and many of the higher 
values contributing to that overall percentage were aspects not reviewed in our deep dives (e.g., pilot 
vision models, manual control). Of the six deep dive areas, where we paid close attention to the 
quality of validation, the percentage was smaller, as shown in Table 5.1, which breaks down 
validation by whether or not it contained a quantitative aspect. 
 
Table 5.1 Validation statistics for deep dive aspects 
Model aspect All validations Included Quantitative 

aspects 
Error 9/17 0/17 
Workload/multi-task 14/33 11/33 
Situation awareness 3/15 1/15 
Pilot-automation interaction 8/16 3/16 
Roles & responsibilities 3/12 2/12 
TOTAL 37/93= 40% 17/93 = 18% 
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Several reasons can be offered to account for this state of affairs. First, and of relatively minor 
importance, the statistics reported could be adjusted upward or downward slightly depending on how 
validation is defined and classified for each model effort. For example some of what we said was 
qualitative validation (and hence counted in the left column but not the right) might be argued to be 
quantitative (e.g., if some numerical data were provided from a PITL simulation, but it was 
challenging to translate these 1-for-1 into the model predictions, e.g., workload was assessed by 
NASA TLX in an empirical study, yet calculated as VACP scores in the model).  
 
Furthermore, some very good model verification, (and we emphasize that a much higher percentage 
the model architectures reviewed were verified, as shown in Table 3.6.1) could be argued by some 
observers to be a form of qualitative validation (hence boosting the numbers in the left column of 
Table 5.1). But at the same time, we might have classified a model as having a qualitative validation, 
and other observers would challenge this as being a verification, given the fuzziness of the 
boundaries between these two concepts. Nevertheless we would argue that the precise values of the 
statistics reported are less important than their approximate level; which indicates that well less than 
half of the model efforts received validation, and less than half of those received the sort of precise 
numerical quantitative validation that can both “sell” the model as being accurate (if the correlation 
is high) and provide precise guidance for model modification, if the correlation is lower. We do 
observe however in Table 4.1, that all the major architectures have received considerable validation. 
On this basis, many of the predictions from such architecture made in model efforts that have not yet 
been validated, are still extremely useful because the prior validation of the architecture, provides 
confidence in the accuracy of the predictions. 
 
To elaborate on the concern about the state of validation, we note that the numerators of several of 
these statistics in Table 5.1 are heavily populated by studies involving non-transport aircraft and/or 
non-transport pilots as apparatus or subjects.  And even of those studies that used professional pilots 
as participants, using aircraft simulations representing modern commercial carriers, only a small 
handful directly examined NextGen issues to test their models predictions. 
 
We offer four non-mutually exclusive reasons for the state of affairs regarding validation. 
 
First, finances for the researcher/modeler are often limited. Most models are developed under 
contract; and the time and effort to accomplish the full validation at the end of the contract are often 
underestimated, following the well-known planning fallacy (Buehler, Griffin, & Ross, 2002). 
Funding runs out before complete validation can be accomplished. Furthermore we have noted that 
in at least two cases, a model was developed in phase 1 of a 3-phase SBIR, and subsequent phases 
(in which validation was planned) were not funded. 
 
Similarly, along the lines of “limited funding,” models provide the opportunity to collect a 
tremendous variety of data regarding predicted pilot performance.  Empirical validation analyses, 
due to time or resource constraints, sometimes focus on a limited set of the data.  Thus sometimes 
the validation is carried out on only a small sampling of the total data set, such as one set of 
subjective ratings or one aspect of visual scanning. 
 
Second, validation is cumbersome; particularly in high fidelity PITL simulations. Pilots and 
simulator time are hard to obtain. Furthermore even when simulations are accomplished, certain 
kinds of data are hard to quantify, such as “a pattern of errors” (see Section 3.1), or a particular 
sequence of procedural steps. Also careful experimental design is necessary to create the different 
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experimental conditions necessary to accomplish true validation. That is, is the model sensitive to 
changes in flight procedures or equipment in the same way that pilots are. It is only by comparing 
model-predicted and pilot-predicted differences or changes that these critical correlational measures 
of validation can be obtained. 
 
Third, some validation studies appear to report narrowly focused, promising results rather than a 
complete set of results.  The more comprehensive pilot models (e.g., those created using MIDAS, 
CASCaS, or ACT-R) can predict many aspects of pilot behavior (e.g., errors, workload, situation 
awareness), yet several of the validation results provided only data on highly specific issues (e.g., 
visual workload, errors in selecting a particular page of data).  This suggests that the researchers 
might be reporting only those that indicate good agreement with the model.  Alternatively, it might 
indicate a bias in the literature, where “uninteresting” results (e.g., of a low correlation prediction) 
are typically not published.      
 
Finally, sometimes numbers may be available from the PITL data, but for reasons that are unclear to 
the authors of this report, were not converted to appropriate statistics. In this regard we wish to 
reiterate that the most appropriate statistics are measures of the shared variance accounted for by 
model and PITL simulation results, where this variance is across-conditions that are meaningful to 
the FAA (e.g., old vs. new procedures, performance with and without NextGen technology or the 4-
way combination of these two). This shared variance is of course represented by the correlation, 
with N defining the number of conditions compared (see 2.2.3 and Appendix A). 
 
However in this regard we also want to emphasize a point made in Section 2.2, that it is the raw 
value of the correlation (from 0 to 1.0) that is important, not necessarily its statistical significance. 
This is of course because the latter is influenced by a sample size, and if only 3 or 4 conditions are 
available for model validation, imposing constraints on statistical significance on a 4-point 
correlation is an impossibly high bar. Indeed even when only two conditions are available (e.g., 
conventional vs. NextGen cockpit), and hence a correlation is meaningless, useful quantitative 
validation can be achieved by comparing the percent difference observed in pilot performance (e.g., 
a 30% reduction in errors) with that predicted by the model. This corresponds to the slope of a 
regression line, which will be closer to 1.0 as the model is more valid. 
 

5.2. Status of Flight Deck Models 
Notwithstanding the limitations of the validation efforts, our team has identified an impressive array 
of models that either are, or could be tailored to address, issues in NextGen. These models were 
defined by those “aspects” of pilot performance that they predict, and these aspects could in turn be 
sorted into three different categories, ordered perhaps from least to most relevant. 
 
First, there were aspects such as spatial disorientation, decision making and manual control that are 
relevant to all aspects of aviation, and for which there was not time nor resources to pursue in depth. 
It was decided during our mid-contract meeting with FAA sponsors that these would need to await 
further study because of our own limited resources.  
 
Second, there were two particular model aspects that we did not initially intend to deep dive, but as 
we proceeded into the second half of our contract effort we realized were of great relevance to the 
six aspects that we were pursuing in depth. These were procedures and vision (particularly visual 
attention). Indeed both of these were partially reviewed in the deep dive effort of Section 3, because 
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of their high degree of relevance: for example procedural models, such as GOMS are often relevant 
to activities like programming an FMS, covered in our PAI aspect. Correspondingly, models of 
visual attention are sometimes a necessary component of situation awareness and automation (PAI) 
modeling. We believe that these two areas should receive high priority for future evaluation and 
model development. We also note that vision models in particular were identified early on in our 
project to have benefitted from a good deal of validation efforts (63% in Table 2.4), and some of this 
validation was in fact reported in Section 3. 
 
Third of course, are the six model aspects that did receive our deep dive analysis (there were five 
categories in Section 3, because workload and multi-tasking were combined into one section). After 
considering these models in some depth, it is our conclusion that, ideally, and at this point in the 
development of NextGen, they should not be pursued in isolation but rather that architectures should 
combine aspects in a manner similar to that typified by, for example CASCaS, MIDAS and TOPAZ. 
Such combination is warranted because the pilots’ responsibilities in NextGen are complex and, 
themselves, integrate these aspects. Several examples abound: 
 

• The pilot using automation (PAI aspect) must maintain situation awareness of automation 
state often through visual attention 

• The pilot’s task of programming the procedures of complex automation (PAI) imposes 
heavy workload 

• Different assignment of roles and responsibilities can substantially influence multi-tasking 
requirements, as well as impose and/or influence communications load. 

 
Each of these three examples link three aspect areas, and for their impact to be predicted, the 
relevant model should, ideally, incorporate the set of relevant aspects. 
 
Of course with the increasing complexity of multi-aspect models comes the danger of decreased 
usability for teams and individuals other than the model developer; although it was not our goal in 
the current effort to “score” models along such a usability scale. Still, we would argue that 
developers of complex models be sensitive to these issues, and perhaps consider a modular “plug in” 
concept, whereby a given model aspect, perhaps vital to answer some modeling questions, can have 
a “default’ (and simplified) representation if that aspect is not critical for a particular application. For 
example a model might have a simplified representation of workload, not requiring channel and 
resource assignment that could be employed when workload questions are not critical; but could be 
replaced by a more sophisticated workload model when they are critical 
 

5.3. Final Conclusions 
The following list summarizes our main conclusions from this review and analysis: 
 

• There are many modeling architectures available for predicting pilot performance. 

• Numerous efforts have been conducted to predict pilot performance. 

• There appears to exist a direct relationship between breadth and complexity of modeling 
efforts (a model that predicts many aspects of pilot performance will probably require 
extensive modeling expertise). 
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• Validation efforts are currently insufficient, particularly in model aspects of communications, 
procedures, and roles & responsibilities, all of which have less than around 25% validation 
rates. 

• Validation efforts should be accompanied by explicit correlation measures, and such 
measures accompanied by the raw data scatter plots from which they are derived. In this way 
readers and researchers can inspect the particular conditions (model predictors) that may be 
“outliers”, either under- or over-predicted by the model. 

• Verification efforts differ in the extent to which they have been implemented. 

• There is a need for clear standards in terms of how models are verified and validated. 

• Development of models that address multiple aspects in combination should be encouraged. 

• There is a need for more funding for model verification and, especially, validation efforts. 
 
Based on these findings, we recommend the following components for a “highly rated modeling 
effort”:  that it include an empirical validation component, that it be scoped appropriately (focused if 
possible), and that it use an appropriate “tool for the task”:  one of the broader modeling 
architectures if it is attempting to model a diverse range of behaviors (e.g., MIDAS, CASCaS, 
TOPAZ);  a cognitive model for addressing cognitive issues (e.g., ACT-R), that it be reasonably 
well validated. Such an effort should include a clear specification of different NextGen procedures 
or technologies; and every effort should be made to maintain features of the PITL simulation 
identical to the conditions of the model simulation. Correlation data should be reported in scatter 
plot form 

We would like to conclude that modeling efforts contribute significantly to improving aviation 
safety, by providing a viable and useful test bed for evaluating design decisions well before 
implementation.  Modeling efforts provide insights into human cognition and behavior, and offer 
useful input to system designers  
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Appendix A:  CSERIAC Report Excerpt   
This material is a modified version of Chapter 1 of Wickens et al, 1997. 
1. Why Model?   
1.1 Early Design Decisions 
It is well established that implementing design changes in a system once it has gone into production 
is very difficult, because of the high cost involved. Thus, human factors deficiencies in a system that 
are revealed through product evaluation are often discovered too late to be corrected (Elkind, Card, 
Hochberg, & Huey, 1990). Human factors input to the design process must be provided early in the 
design cycle, before extensive production setup costs are incurred. But, in the absence of an existing 
system or prototype configured with a human in the loop to evaluate the design, where should such 
input originate? A strong case can be made for using computer-based models to "compute" the 
efficiency of proposed designs from a human factors standpoint (Corker & Smith, 1993). While such 
models may not be likely to indicate the "best" design, they should be able to raise a red flag by 
revealing important human factors deficiencies when they are run using a representation of the 
proposed design as model input. The sorts of human factors deficiencies that directly concern us 
here are, of course, deficiencies in the layout of information appearing on a display, and, when 
appropriate, the physical placement of displays and associated controls. 
 
1.2 Conflicting Principles 
As those working in the design community will testify, it is rare that a given display arrangement 
satisfies all human factors layout principles simultaneously. For example, moving one frequently 
used display close to another frequently used display may mean placing it farther away from a 
display to which it is related. Placing related displays close together may create problems if they are 
placed so close together that the layout becomes cluttered. When two (or more) principles conflict, 
which one should be followed? Is the best solution a compromise that violates both principles to 
some extent? A validated model can incorporate answers to such questions and guide the display 
layout process. A model that takes account of the various principles and provides weights 
characterizing their relative importance can provide a number that expresses the added benefit of 
adhering to (or cost of violating) a combination of principles for a given proposed design. Then, the 
optimal design (or best compromise) can be predicted.  

 
For example, if adhering to principle A (e.g., moving a display closer to another display used in 
sequence) is twice as important (leads to twice the predicted performance gain) as adhering to 
principle B (e.g., moving the display closer to a functionally related control), then there is solid 
justification for choosing a design solution that conforms to A but violates B, even if cost or 
engineering factors may slightly favor B. In the absence of such models, the designer is left in a state 
of frustration when a list of sometimes conflicting principles is offered, but no guidance is given on 
how to resolve these conflicts except by doing further costly experiments. In such instances, it is 
understandable that the designer will simply choose to satisfy the principles that can be applied most 
economically. The availability of models should help to address this situation.  
 
1.3 Figure of Merit 
A third reason why computational models are important is that they make it possible to assess the 
degree to which a display layout adheres to human factors principles by providing the designer with 
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a predicted figure of merit for a given display layout. When there is a computational algorithm for 
measuring the strength of adherence to (or violation of) each principle in isolation, then the overall 
"goodness" of a display layout can be assessed by properly combining these assessments of 
adherence to each principle. This combination should, of course, weight the degree of adherence to a 
given principle by the degree of importance of that principle to system performance. In this way, 
different display layouts can be compared and evaluated before manufacturing begins to determine 
which one is the "best." Or, alternatively, the impact of a particular design decision (e.g., to 
reposition a display to a side panel) can be evaluated and its cost or benefit expressed in quantitative 
terms. Such quantitative comparative data should be useful in trading off human factors constraints 
against other engineering design or cost constraints. As we have noted, it is particularly valuable to 
have these data in advance of the actual manufacturing process (i.e., before "metal is bent"), because 
of the incredibly high cost of making adjustments in design later to accommodate human factors 
concerns that were revealed only after production had begun (Elkind et al., 1990).  

 
2. Computational Models and Measures:  Properties and Criteria  

 
By a computational model, we mean here a tool that "computes," from inputs of parameters that 
reflect characteristics of a pilot-task-interface description, some numerical index of the quality of 
performance of the pilot-aircraft system. Such computation is typically (but need not be) done on a 
computer, in that certain models can predict outputs via a simple algebraic formula (Elkind et al., 
1990). A high figure of merit based on a validated model predicts relatively good performance in 
terms of accuracy and/or speed &/or workload &/or situation awareness. At a minimum, the model 
should make ordinal predictions (A is better than B is better than C). Preferably, it should be able to 
make interval- or ratio-scale predictions of how much better A is than B.  

 
Many models are based upon measures of two sorts. There are measures that may define the input to 
a model, such as the complexity of a particular flight deck operation, or the computed salience of an 
alert. There are also measures of the model output, performance, workload and/or situation 
awareness, and these measures, to be useful in model validation, must often be operationalized in 
particular procedures (e.g, NASA TLX measures of workload; relational complexity as a measure of 
cognitive complexity. A measure does not become a model, however, until it is incorporated into a 
quantitative expression that predicts the direction and approximate magnitude of the effects on 
performance.  
 
There are a number of important criteria by which the value of a model or measure can be judged. 
The following sections describe the four most important of these criteria: validation, complexity, 
practical significance, and a priori specification. A fifth criterion, usability, is also mentioned, but 
it is more difficult to apply to the models reviewed in this report.  

 
2.1 Validation  
Validating a computational model or measure is very similar in many respects to validating a test. 
The goal of test validation is to determine if the score earned by an individual on the test correlates 
with or predicts some criterion score measured under other, usually more "operational," 
circumstances (Anastasi, 1988; Allen & Yen, 1979). For a pilot performance model we ask whether 
the score (level of performance) predicted for a particular pilot-task-interface combination correlates 
with the level of performance measured under operational conditions. Do pilots actually perform 
better in the conditions that are predicted to be better? Do pilots make the same kinds of errors that 
are predicted? 
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While we will see that few pilot performance models have been validated in real-world conditions, 
many have not even been validated against human performance at all.  This fact is not meant to be a 
criticism of their developers; rather, it should serve as a caution to potential users to seek validation 
of the and also to evaluate the quality of whatever validation has been done. In the paragraphs 
below, we outline some of the factors that should be considered in assessing the quality of empirical 
validation.  
 
To provide some concrete context for this discussion, suppose a model is developed to predict the 
optimal layout of cockpit instruments for aircraft flight (Andre & Wickens, 1991). Eight possible 
layouts are constructed, and the model incorporates parameters that characterize each layout in order 
to predict a level of performance for each. Pilots then perform a flight task with each layout, a 
performance score is derived, and a correlation is used to evaluate the extent to which the model 
predictions for each layout match with the obtained data (Figure 1a). The higher the correlation, the 
better the model and the more successful is the validation. That is, if a model has had its predictions 
matched against performance, we can say it has been validated. To the extent that the correlation 
returned by such matching is high, we can say that the validation is successful. There are four 
critical elements involved in creating this correlation and using it to demonstrate model validation: 
the criterion, the operator sample, the condition sample, and the statistics. We discuss each of these 
below, to show how their characteristics can influence the validity of the model. 
 

 
Figure 1.  Correlation in model validation. 

2.1.1  The Criterion. The criterion variable is the variable that is measured on the y-axis of Figure 
la. In the Andre & Wickens example, it is a measure of how good a job the display layout does in 
supporting performance of the task. But what does "good" mean? Ideally, the variable used should 
be some measure of performance evaluated against objective criteria. In our example, this might 
include reduced flight path deviation or more rapid and accurate hazard detection. These criterion 
variables are preferred over operator opinion, simply because in so many circumstances, what users 
say about an interface does not necessarily agree with how they perform using the interface (Andre 
& Wickens, 1995).  
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Ideally, the criterion variable should also be measured in more operational circumstances. We argue 
that, all other things being equal, measurement in the aircraft is more valid than measurement in the 
simulator, and measurement in the simulator is more valid than measurement in the basic laboratory 
setting. But these suggestions do not mean that laboratory studies, or those that have used operator 
opinion to solicit data on the ordinate of Figure 1a, are "invalid." Our argument is simply that they 
will be less robust than simulator-based and/or real-world measures, all other factors being equal. 
These "other factors," which are sometimes traded off in favor of more basic laboratory validation, 
are related to the sample, as discussed next.  
 
The Sample. Each correlation is based upon a set of data points or cases (e.g., the points in Figure 
1a, which is called the sample). The measure of validation is based in part on the identity of those 
cases. Generally, the greater the degree to which the people whose performance is evaluated are 
typical of the real world users of the system, the greater the generalizability to the actual applied 
setting. Hence, testing pilots would provide a more meaningful evaluation of a model of cockpit 
display layout than testing non-pilots.  
 
One reason that validation studies sometimes fail to employ typical system users (experts) is the lack 
of availability of those experts, which may make it difficult to obtain a sufficient sample size. When 
sample size is small, a correlation can appear to be very high, yet not be statistically reliable, in the 
sense that it may not be replicated in future studies. Validation studies should seek a large sample, 
and reports of these studies should always indicate the sample size. Note that if the users are in 
scarce supply and the real world conditions are expensive to create, it is the need for large samples 
that sometimes leads model validation efforts away from using typical users and real world 
conditions.  
 
As noted, the sample is made up of cases. The reported correlation will differ depending on whether 
those cases, the individual data points in Figure 1a, each represent data that are (a) the average over 
subjects of performance in each of several test conditions, (b) the individual measure of each subject 
in each condition, or (c) the average for each subject over several test conditions. Since models are 
typically developed to predict the effect of different conditions, rather than differences among users, 
the third option is not appropriate, and is rarely used. The choice between the first two options 
however is not trivial, however, and which method is used should be clearly reported when 
correlations are presented.  
 
To illustrate the consequences of this choice, Figure 2 shows validation of a model on four test 
conditions (A-D) with three subjects (1-3). The raw data points used to compute correlations can 
represent either the means for the different conditions (averaged over subjects, Figure 2a), the means 
for the different subjects (averaged over conditions, Figure 2c), or a heterogeneous mixture of the 
means for each subject and condition (center panel, Figure 2b).  
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Figure 2.  Results of validation study testing three subjects (1-3) under four conditions (A-D).  (a) 

Illustrates a positive correlation between model prediction and obtained data for the four conditions 
(averaged over subjects). (b) Shows a 0 correlation when variance between subjects is combined 

with variance between conditions. (c) Shows a negative correlation when data for each subject are 
averaged over conditions. 

 
As the figure illustrates, each technique can yield a quite different correlation between predicted and 
obtained scores. Nevertheless, model validation studies are not always explicit about which form of 
correlation is used. We suggest that the first technique is of greatest value in model validation 
because it removes variance accounted for by individual differences among subjects, which the 
model is generally not intended to predict. A plausible alternative is to compute the correlation 
between model prediction and performance for each subject individually (e.g., correlation 
underlying the 4 points on each line in Figure 2b) and then report the average correlation across 
subjects (See Wickens, McCarley, Alexander, Thomas, Ambinder, & Zheng, 2008 for an example). 
In many respects this approach is optimal because it both shows how well the model fits individual 
pilot data, as well as the data of the “mean pilot”.  
 
2.1.2  The Conditions. Model validation requires the construction of a set of conditions, like the 
eight display layouts described above, that vary along some parameter(s) incorporated in the model. 
It is important that the range of the parameters be appropriate., neither two wide nor too narrow. 
Validation efforts may sometimes fall short by creating too little variance between the conditions, 
relative to the power of the model. For example, if one parameter in the model relates to mean 
display separation, and the validation study used four separations varying in increments of only 0.5 
cm, the model might predict little variance in performance. With little variance predicted, a 
correlation with performance cannot be expected to rise very high, and the validation effort is 
doomed to failure.  
 
At the other extreme, it is easy to select two or three cases to evaluate that differ by such obvious 
and excessive magnitudes that variance in performance between them is virtually guaranteed. To 
take our previous example, we might select display separation differences of 1, 10, and 100 cm. In 
this case, the differences in visual scanning requirements are large enough to guarantee substantial 
performance differences (probably lower performance with the wide separation). In this regard, it 
should also be noted that a single "outlier" point in the appropriate corner of a scatter plot can 
greatly inflate (Figure 3a) or deflate (Figure 3b) the value of a correlation, particularly if the sample 
is small, and hence make it appear that the model is doing a much better (or worse) job of predicting 
performance than it really is. This is illustrated in Figure 3. In 3a, the model appears to have no 
predictability across the four conditions at the lower left, yet because of the single outlier, the 
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correlation will be high. In Figure 3, the model does a very good job predicting variance in 
performance across the four conditions in the lower right, but because of the outlier, the correlation 
would be very low, and perhaps negative. 
 
The above concerns can be addressed by carefully selecting the parameter values to span the range 
to be considered by the model (or to be realistically incorporated in actual system design), and, 
ideally, by presenting the raw scatter plot from which the correlations are derived and carefully 
labeling or identifying any "outlier" conditions that might predict one extreme reading.  Correlations 
should be reported both with and without the outlier, and a clear discussion is needed as to the 
possible reasons for its removal. That is, what unique properties of the condition in question might 
have caused its displacement from the rest of the data points. 
 

 
Figure 3. Four examples of model prediction (X axis) vs. obtained performance (Y axis). (See text 

for a description. The correlation values shown in the figures are not precisely accurate, but are 
illustrative) 

 
2.1.3  The Statistics. Within the context of a model, the correlation coefficient is a statistic that is 
often used to characterize the relationship between predicted and obtained scores. The Spearman 
product moment correlation is the statistic typically used, but rank-order correlations are also 
sometimes appropriate (particularly when extreme values, as discussed above, may inflate the 
Spearman value).  
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Three aspects of the correlation are important to validate a model across conditions: its value (from -
1.0 to 0 to +1.0) and its significance (based jointly on its value and the sample size, N, or the number 
of points in the scatter plot), and N. In classical statistics, most weight is given to significance. But 
in model validation, equal concern should be given to the value of r. This is illustrated in figure 3c 
and d. In figure3c the model does a beautiful job of predicting performance, but the high correlation  
(0.95) may not reach “significance” simply because of the small N. In figure 3d the model is not 
very good at predicting performance, the correlation is low but it may be significant because of the 
much larger value of N. Hence authors should always report both the correlation value and its 
significance and N. 
 
A special case in the statistics of model validation, which is important because of its prominence in 
many of the models discussed in this report, concerns linear regression models, in which the 
parameters for the model are themselves derived from empirical data. In a typical linear regression 
approach, the eight display layouts in our experiment might each be characterized by their 
quantitative level along each of three display variables captured by a model parameter (e.g., average 
separation, degree of clustering by relatedness, degree of importance). After the dependent variable 
(e.g., a performance measure) is assessed, linear regression will provide weights dictating the 
relative importance of each of the three parameters in accounting for variance across the criterion 
measure (M), such that:  
 

M=aA+bB+cC  
 
where A, B, and C are the levels of each of the three parameters; and a, b, and c are the weights of 
each parameter in the equation.  
 
A well-known characteristic of multiple regression models is that they tend to provide an overly 
optimistic picture of how well the parameters do in predicting the model dependent variable, 
because these predictions will capitalize on, and be able to account for, chance or random variation 
in the criterion measure. This problem can be dealt with in three ways. First, there are objective 
techniques of "correction for shrinkage" (Tatsuoka, 1971) that reduce the stated estimate of the 
predicted variance accounted for. Second, and more preferable, is cross-validation. In one form of 
cross-validation, the regression weights are derived on one sample (of conditions, subjects, or both), 
and then applied to a different sample to determine how well the data of the latter sample are 
predicted. The latter is then used as the reported validation measure. In another form of cross-
validation, the validation experiment is simply repeated. Finally, the third defense against the 
problem, which is compatible with either of the first two, is to restrict the parameters in a marketed 
model to those that "make sense" in terms of a conceptual model of human information processing. 
That is, a parameter might describe a component like working memory load or the breadth of 
attention that has an independently validated role in human psychology. 
 
All three of these corrective procedures tend to reduce the amount of "significant variance" 
accounted for by a model and hence, in a way, make the model appear less effective. For this reason, 
and because of the added complexity of carrying out the first two defenses, many developers of 
multiple regression models may be reluctant to apply the procedures. But potential model users 
should be aware of these possible constraints on the validity of regression-based models.  
 
2.1.4  Qualitative Validation. Finally, we note a form of validation in qualitative rather than 
quantitative form. Here the model predicts some pattern of effects, or distribution of error types, or a 
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particular error occurring in a particular circumstance. There is no number describing the level of 
successful prediction, but only data presented that suggest a matching pattern. 
 
3. Complexity  

 
Complexity is a second feature that characterizes the potential value of a model to the user. This 
feature distinguishes single parameter from multi-parameter models.  
 
Single parameter models may do a precise job of predicting the effect of a given variable (e.g., 
spatial separation, location in the visual field) on display processing, but they are less than fully 
satisfactory for use in design. The reason is that they fail to address how the impact of the given 
parameter will be influenced by other environmental or task characteristics that may vary in real-
world conditions. The influence of one model parameter on performance may be greatly affected by 
(i.e., interact with) another parameter. For example, changes in the spatial separation between two 
displays will have a very different impact when the displays are related to the same task than when 
they are not. Hence, it is desirable that models not only recognize the need to address multiple 
(pertinent) predictive variables but also to include higher-order terms to examine and account for the 
impact of their potential interactions. 

 
4. Practical Significance of Effects  

 
The value of a model or measure to the user also depends on whether the predictions of the model 
(or the effects due to the characteristic measured) are on a scale that makes a difference in practice. 
In operational circumstances, time differences of seconds, or sometimes as short as tenths of a 
second, are generally of practical importance. In contrast, differences on the order of milliseconds 
rarely have operational relevance in any sense other than a theoretical one, even though under 
careful laboratory control small differences may take on a high degree of statistical significance. The 
magnitude of time difference that is important is, to some extent, context dependent, however. For 
models predicting the time to perform highly predictable and repetitive operations like key strokes 
(Card, Moran, & Newell, 1986) differences of tenths or even hundredths of a second can be 
meaningful.  
 
In general, then, the greater the magnitude of the typical time effects predicted by the model, the 
greater the value of the model in terms of its practical significance. Models that predict errors also 
score highly on the practical significance criterion.  
 
Note that many validated effects in the millisecond range as demonstrated in the controlled 
laboratory may indeed turn out to have important design implications. But the robustness of these 
effects in more complex, less controlled environments should be assessed before certifying them as 
important components of display layout models. Many theoretically important models of visual 
attention processes have been intentionally excluded from consideration in this report because their 
practical significance has been deemed low.  

 
5. A Priori Specification  

 
This criterion assesses the degree to which the user of the model or measure can specify model 
parameters or compute the measure without collecting any new data. For example, some models 
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require that frequency-of-use estimates for different display components or transition probabilities 
between displays be obtained before computation of layout design measures can begin (e.g., Freund 
& Sadosky, 1967; Wierwille, 1981). This feature makes the models more difficult to use. Models 
and measures that require only information about the physical characteristics of a display are easier 
to apply than models and measures that require specification of aspects of the task or display 
content. Models that require formal experiments or observational studies to obtain values for model 
parameters are of limited usefulness to many designers. 

 
6. Usability  

 
One final criterion that should not be overlooked is the usability of the model or measure for the 
designer to whom it is recommended. Rouse and Cody (1989) note that designers' use of data 
sources is heavily dependent on the ease of using those sources. Hence, a well validated model that 
incorporates many variables, predicts significant performance differences, and requires no data 
collection to implement may nevertheless be neglected because its features simply make it too 
difficult for the non-expert to use. Ironically, sometimes the model builder's quest for high validity 
and explanatory power can make the model so complex (i.e., with too many parameters that must be 
specified) that it will remain unused. Other features affect usability as well, however. Good human 
factors at the computer interface, well-written instruction manuals, understanding of the model user's 
domain, and compatibility with readily available hardware are all examples. While we consider the 
usability criterion to be critical, it is difficult to apply to most of the models reviewed here, since 
they are not sufficiently mature for formal computer-based software and user interfaces to have been 
developed. 
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